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A natural starting point to the study of black holes is to consider the ultimate fate of stars
of sufficiently high mass. This gravitational collapse approach is not the only possible avenue to
the problem, but it has the virtue of providing a general framework that illustrates some of the
main aspects, not only of black hole physics, but also of gravitational physics, this including in
particular General Relativity. Moreover, it also follows the historical route to the topic.

1 The classical standard picture of gravitational collapse: a first
physical overview

1.1 Star structure

We start by considering a simplified Newtonian description of stars. The structure of stars is
basically governed by three simple laws, namely hydrostatic equilibrium, energy transport and

1



Figure 1: Star as a equilibrium between gravitational force and expanding pressure.

energy generation. For a spherical symmetric star (see Fig. 1.1):

dM(r)
dr = 4πr2ρ(r)
dP (r)
dr = −GM(r)

r2
ρ(r) (hydrostatic equilibrium)

dL(r)
dr = 4πr2ε ρ(r) (energy conservation)

dT (r)
dr = − 1

4πr2λ
L(r) (energy transport)

where the primary variables of the system M(r), P (r), L(r), T (r):
M(r): mass contained from the center r = 0 to the shell of radius r
P (r): pressure at radius r
L(r): energy flow through the sphere of radius r
T (r): temperature at radius r.

In order to close the system we need:

• Equation of state: P = P (ρ, T,Xi), or inverting ρ = ρ(P, T,Xi)

• Coefficient of conductivity: λ = λ(ρ, T,Xi)

• Energy production rate: ε = ε(ρ, T,Xi)

with Xi accounting for the chemical composition. In addition we need boundary conditions.
This would parametrize the stars in terms of its radius. However, the radius is a bad parameter
since it is difficult to determine either experimentally or a priori. A better choice is to choose
the mass of the star. For this we rewrite (1), with the mass contained inside a given shell as
parameter:

dr(M)
dM = 1

4πr2ρ(M)
dP (M)
dM = − GM

4πr4
(hydrostatic equilibrium)

dL(M)
dM = ε (energy conservation)

dT (M)
dM = − 1

16π2r4λρ(M)
L(M) (energy transport)
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Appropriate (approximate) boundary conditions are:

r(0) = 0 , L(0) = 0 , P (Mstar) = 0 , T (Mstar) = 0

where Mstar is the total mass of the star, which becomes a parameter in the model.
The crucial ingredients to counteract the gravity and keep hydrostatic equilibrium are the

energy production rate and the equation of state. In gravitational collapse, part of the initial
gravitational energy is used to heat the matter. However, the resulting increase in the pressure is
not enough to reach the hydrostatic equilibrium. When the temperature is high enough nuclear
reactions are initiated and the resulting ε is able to keep the equilibrium and the life of star is
span. However, once this nuclear fuel is exhausted, the hydrostatic equilibrium is once more
lost and collapse continues. The collapse continues until matter reaches an stage in which the
equation of state is rigid enough. This leads to the formation of compact stars.

1.2 Compact stars

Degenerate Fermi gas. Fermions satisfy Pauli’s exclusion principle, that prevents two fermionic
particles to be in the same quantum state. Electrons, protons and neutrons are fermionic par-
ticle of spin 1/2. This in particular means that for a given momentum p there can only be
two particles (spin-up and spin-down). As a consequence, particles occupy the phase space till
a maximum Fermi momentum pF. As a consequence of this motion, the resulting degenerate
Fermi gas acquires a pressure. It is this pressure that balances the gravitational force.

In our context the relevant particles are electrons and neutrons since, at sufficiently high
densities, protons and electrons suffer a weak force process (a form of beta-decay) known as
neutronization:

e− + p+ → n0 + νe (1)

The equation of state of a degenerate Fermi gas has two different regimes: i) non-relativistic
regime, when the reached Fermi momentum satisfy pF � mc and ii) the ultra-relativistic regime,
when pF � mc. The equations of state differ in both cases, although they share the key feature
of not depending on the temperature. We have (see e.g. [1])

relativistic Fermi gas: P = K ~2
m (NV )

5
3

ultra-relativistic Fermi gas: P = K ′~c(NV )
4
3

(2)

where N is the total number of fermions and K and K ′ are dimensionless constants.

Degenerate stars. Estimating the density as ρ ∼M/R3 and the pressure gradient as ∇P ∼
P/R we can write the hydrostatic equilibrium equation as GMρ

R2 ∼ ∇P

GM2 ∼ PR4 (3)

We also introduce the mass per Fermi particle m′ = M/N . Then, we can write:

• Non-relativistic regime: From Eq. (2)

P ∼ ~2

m

(
N

V

) 5
3

∼ ~2

m
· N

5
3

R5
(4)
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so that from (3) we have

GM2 ∼ ~2

m
· N

5
3

R
(5)

and using m′

R ∼ ~2

Gmm′5/3
1

M1/3
(6)

From this we conclude that the larger the mass, the smaller the radius. This is the
crucial ingredient of the Fermi degenerate equation of state. It implies that as we consider
increasing masses the density and pressure also grow until we reach a (ultra-)relativistic
regime for the Fermi gas.

• Ultra-relativistic regime: Repeating the steps:

P ∼ ~c
(
N

V

) 4
3

∼ ~c · N
4
3

R4
(7)

and

GM2 ∼ ~c ·N
4
3 (8)

Remarkably, the radius disappears from the equilibrium relation, so that the mass is fixed

M ∼M? =
(~c/G)3/2

m′2
(9)

The conclusion is that for masses below M?, the pressure associated with the degenerate Fermi
gas supports the gravitational force. As the mass increases the radius decreases and the fermions
become more and more relativistic. Then the ultra-relativistic regime provides the critical mass
mass that can be supported by this mechanism.

White dwarfs are compact stars in which the degenerate Fermi gas is composed of electrons.
In this case, the limit to the mass is known as the Chandrasekhar limit and is about 1.44M�.
For neutron stars, resulting from supernova core-collapses of massive stars, the limit is referred
to as Tolman-Oppenheimer-Volkoff and is less precisely established, depending essentially on
the details of the equation of state. A particular (exotic) class of neutron star are quark stars
in which the relevant degenerate fermions are strange stars (postulated as the ground state of
baryonic matter).

Beyond this mass, no mechanism is known capable of stopping the gravitational collapse.
The eventual result of this process is what we know as black hole. Black holes are a dramatic
extreme case of a characteristic feature of General Relativity: bending of light. And the latter
is a manifestation of a more general concept: spacetime curvature. Let us explore how this
concept emerges in the study of gravitation.

2 A first glimpse into to Gravity as spacetime curvature

Special relativity offers a description of relativistic motion in the case that gravity can be ne-
glected. However, compact stars in the last stages of gravitational collapse involve both rela-
tivistic motion and strong gravitational fields. In this section we describe the tension existing
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Figure 2: Violation of energy conservation if photons are not gravitationally redshifted.

between special relativity and the incorporation of gravity in the picture, ultimately leading to
the notion of a curved spacetime:

Special Relativity
Gravity

}
Tension −→ Spacetime curvature

The main line of reasoning is that the marriage between light propagation and gravity implies
the existence of a gravitational redshift effect, and that the latter is incompatible with special
relativity, leading to the notion of an intrinsically curved spacetime:

Gravitational Redshift
flat spacetime

}
−→ Spacetime curvature

We follow essentially the discussion in [5].

2.1 Gravitational redshift from energy conservation

Let us start by reviewing the original Einstein argument, based on physical reasoning (namely
energy conservation), leading to the existence of gravitational redshift.

We dwell here in a Newtonian description of gravity. Let us consider a particle of mass m
at a height L in a constant gravitational field (with gravitational acceleration g).

i) Initially the particle is at A and its rest energy is:

EA = mc2 . (10)

ii) It falls to B, having a rest plus kinetic energy:

EB = mc2 +mgL . (11)

iii) At B, the particle is annihilated producing a photon with (the same) energy:

EBph = mc2 +mgL . (12)

Then the photon goes back upwards to A. If the energy of the photon at A were EAph =

EBph = mc2 +mgL, then we are able to create energy that we can use. Indeed, the photon
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at A can be transformed into a particle of mass m and some additional energy (thermal,
kinetic...) (see Fig. 2.1):

EA = mc2 +mgL . (13)

We can repeat the process n times after which we have at A a particle of mass m and a
production of extra energy

EA = mc2 + nmgL , (14)

producing an arbitrarily large violation of the energy conservation.

The way out is to accept that the photon loses energy when going from B to A: the photon has
to climb the gravity potential exactly as a massive particle would have to. Therefore starting
from B with an energy EBph it arrives at A with an energy EAph

EBph = mc2 +mgL = mc2(1 +
gL

c2
) → EAph = mc2 (15)

Now Einstein’s argument incorporates another piece of physical reasoning. In particular, at this
point one uses the relation between energy of a photon and its wavelength given by quantum
theory, namely

Eph = hν = ~ω . (16)

Then, using λ = c/ν and the redshift factor z introduced as

z =
λA − λB
λB

, 1 + z =
λA
λB

, (17)

one gets

1 + z =
λA
λB

=
νB
νA

=
hνB
hνA

=
EB
EA

= (1 +
gL

c2
) , (18)

so that

z =
gL

c2
. (19)

This expression for the redshift of a photon “going up” a gravitational field, deduced by Einstein
in 1911 using this chain of heuristic physical arguments, would be experimentally confirmed only
in 1959 by Pound & Rebka [7].

2.2 Gravitational redshift and the principle of equivalence

The previous discussion of the gravitational redshift is physically inspiring, but can be criticized
on consistency grounds. The discussion can be recast in a more systematic (“first-principles”)
form in terms of the key ingredient in the process of the geometrization of the gravitational field:
the equivalence principle. In its more basic form it states:

“All effects of a uniform gravitational field are identical
to the effects of a uniform acceleration of the coordinate system.”
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Figure 3: Photon moving in a constant gravitational field or, equivalently, in an accelerated
frame.

This is a generalization of the simple remark in the context of Newtonian particle dynamics,
where we can write

m
d2x

dt2
= F = mg ⇐⇒ d2x

dt2
− g = 0 ;

d2x′

dt2
= 0 , (20)

with

x′ = x− 1

2
gt2 = x+

1

2
at2 ; a = −g . (21)

As in the case of the relativity principle leading to special relativity, the key element here is the
extension of the validity of the statement to ALL possible effects, this including electromagnetic
ones, in particular light propagation.

Let us consider again the points A and B above, standing in a constant gravitational field.
A photon γ is emitted from A to B.

According to the equivalence principle we can consider the photon suffering an acceleration
a = g, as in an accelerated rocket in absence of gravitational field1. See Fig.2.2

Described in the non-accelerated frame, points A and B move in a uniformly accelerated
motion as

xA = L+
1

2
gt2 ; xB =

1

2
gt2 (22)

i) The photon is sent from A at t = 0, so that B receives it at t = t1. The traveled distance
is

xA(0)− xB(t1) = ct1 , L− 1

2
gt21 = ct1 . (23)

ii) A second photon (or the next crest in a wave train) of is sent from A at t = ∆τA and
B receives it a time ∆τB after receiving the first photon, that is at t2 = t1 + ∆τB. The
distance traveled by the second photon is

xA(∆τA)− xB(t2) = c(t2 −∆τA) = c(t1 + ∆τB −∆τA) . (24)

1We will neglect second order terms (such as
(
v
c

)2
or

(
gL
c2

)2
) in the following discussion.
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The left hand side can be re-expressed as

xA(∆τA)− xB(t2) = xA(∆τA)− xB(t1 + ∆τB) = L+
1

2
g(∆τA)2 − 1

2
g(t1 + ∆τB)2

= L+
1

2
g(∆τA)2 − 1

2
gt21 − gt1∆τB −

1

2
gτ2B ≈ L−

1

2
gt21 − gt1∆τB , (25)

where we have neglected second-order terms in ∆τ ’s. That is

L− 1

2
gt21 − gt1∆τB ≈ c(t1 + ∆τB −∆τA) . (26)

Subtracting (23) from (26) we get

−gt1∆τB = c(∆τB −∆τA)⇔ ∆τA = ∆τB(1 +
gt1
c

) . (27)

Finally, approximating at first order from (23), t1 ≈ L
c we get

∆τA = ∆τB(1 +
gL

c2
) . (28)

iii) Now, expressing the time intervals ∆τ ’s in terms of frequencies, ∆τ = 1/ν we write

νB = νA(1 +
gL

c2
) , (29)

from where, again

1 + z =
λA
λB

=
νB
νA

= (1 +
gL

c2
) , (30)

and

z =
gL

c2
. (31)

as in Eq. (19).

2.3 Gravitational redshift implies curvature of spacetime

The previous discussions have led us to the notion that light propagating in a gravitational field
gets redshifted. We can accept this either from Einstein’s physical argument, or as a consequence
of the equivalence principle, or simply as an experimental fact from Pound & Rebka experiment.

On the other hand, special relativity has already shown that a consistent description of
particle kinematics and electrodynamics involves a spacetime perspective on space and time.
Space and time are recast in a single geometric structure modeled as a linear space endowed
with a flat metric of Lorentzian type: the Minkowski spacetime. At this point we show, following
an argument of Schild (see Fig. 2.3), that the presence of a gravitational redshift is incompatible
with the existence of a flat spacetime like in special relativity. Schild’s argument is independent
of the detailed mathematical description of the gravitational field. Only stationarity plays a key
role in the argument. Let us consider two observers A and B at rest one with respect to the
other and with respect to the Earth (namely, the source of the gravitational field). Whatever
the nature of the gravitational field is, it will present a stationary configuration.
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Figure 4: Diagram for Schild’s argument on the incompatibility between gravitationa redshift
and flat spacetime.

Figure 5: Wave train of signals emitted from B towards A.

9



At some given time, a signal is emitted from B towards A. Let us assume that it is a periodic
signal with N cycles. Then (see Fig. 2.3)

N = νB∆τB , (32)

with νB the frequency and ∆τB the elapsed time of the signal.
The receiver at A receives the N cycles in a time ∆τA, so that

N = νA∆τA , (33)

and

νA∆τA = νB∆τB . (34)

According to previous discussions, if a redshift is present we have νB > νA and, as a consequence

∆τA > ∆τB . (35)

However, since the gravitational field is static and the observers do not move, trajectories γ1
and γ2 of the respective photons must be congruent curves, i.e. γ1 and γ2 are the sames curves
except from their positions in space. If such curves are placed in a flat space and time diagram
(namely, the spacetime), they must form a parallelogram, so that

∆τA = ∆τB , (36)

in contradiction with (35). This contradiction indicates that the flat spacetime of special rela-
tivity, namely Minkowski spacetime, is not adequate for the description of gravity. If we want
to stick to the spacetime vision of space and time provided by special relativity, then we must
renounce to spacetime flatness. In particular, parallel light trajectories can start converging and
diverging, in general bending in a curved spacetime. More generally, in this geometric spacetime
perspective the presence of a gravitational field is realised through the curvature of spacetime.
General Relativity provides a definite self-consistent manner of introducing physical sources to
this spacetime curvature, namely through energy and stress of matter. At the same time, it
endows this spacetime curvature, namely the gravitational field, with specific dynamics. We will
address that in Lecture 4, when we describe Einstein equations.

3 Classical collapse: standard relativistic paradigm

As discussed above, a characteristic feature of General Relativity and, more generally of theories
modeled on curved spacetimes, is the bending of light. Black holes constitute a dramatic extreme
in which the light bending is so strong that it cannot leave a certain compact region of the space.

Let us give a brief overview of the current standard picture of classical gravitational col-
lapse, that constitutes what one might call the establishment picture of gravitational collapse.
This consists in a heuristic chain of theorems and conjectures providing a general conceptual
framework:

i) Singularity theorems (Theorem). If enough energy is placed in a sufficiently compact region,
so that light bending forces the local convergence of all emitted light rays and so-called
“trapped surfaces” are formed, then a singularity develops in spacetime [6, 3, 4, 2].
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Figure 6: Establishment picture of gravitational collapse. The picture in the right is a Carter-
Penrose spacetime diagram where lightlike rays lay at ±45o. The thick line at 45o line represents
the event horizon, separating the black hole region to its left (containing the spacetime singularity
corresponding to the horizontal oscillating line) from the rest of the spacetime.

ii) (Weak) Cosmic Censorship (Conjecture). In order to keep the predictability of the theory,
the formed singularity should be hidden from a distant observer behind a so-called “event
horizon”, giving rise to a black hole region.

iii) Spacetime stability (Conjecture). If general relativity is a physically consistent theory of
gravity, it is natural to expect that a system with a finite amount of energy must be
eventually driven dynamically to stationarity. This is again a conjecture, now about the
stability of a black hole spacetime.

iv) Black hole uniqueness (Theorems). The eventual stationary state is completely charac-
terized by the mass and angular momentum of a the resulting (Kerr) black hole. This is
usually referred to as the no-hair property of stationary black holes.

The establishment picture provides a general systematic framework for posing and addressing
issues related to black hole spacetimes. In particular it provides a working program to the study
of many of the key aspects to General Relativity. On the other hand, it must be said that nearly
every single aspect of it is challenged at one place or another in gravitational physics. In quite
a literal sense, the goal of this course is to explain the diagram in Figure 3.

4 Interest in Black Hole physics

Why should done study black holes? A straightforward valid astrophysical answer could be,
simply, because they are out there. Although this is indeed a valid answer, this does not make
justice to the richness of the subject. Black holes indeed constitute, on the one hand, crucial
ingredients for the understanding of astrophysical and cosmological processes. But, on the other
hand, they also provide clues for the understanding of fundamental issues in the theory as well
as a cornerstone in modern developments in theoretical physics.
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4.1 Black holes in astrophysics and Cosmology

4.1.1 Compacity parameter

By now we have a general broad picture of the destiny of star attending to its final mass. The
resulting final stage is a compact massive object, namely white dwarf stars, neutron stars or
black holes. One might expect that the key parameter controlling the transition from white
dwarfs to black hokes to be the density of the final object, but this not quite so. Indeed the
(formal) density of supermassive black hole can be indeed very small. The relevant parameter
is the one controlling the ability of emitted light rays to escape from the object, and this is
controlled by a dimensionless parameter Ξ referred to as the compacity parameter

Ξ =
GM

c2R
, (37)

where M is the mass of the object and R is its characteristic scale (radius). In order to gain a
qualitative intuition of why the radius enters with as R−1, and not as R−3 as it would be the
case for a density, it is enough to consider the Newtonian description of the escape velocity. For
this we consider a particle of mass m emitted with velocity v from the surface of an spherical
object of mass M at radius R. Its total energy is ER = 1

2mv
2 − GMm

R . The escape velocity is
the one that permits the particle to reach an infinity distance with vanishing velocity, so that
E∞ = 0. Conservation of energy then gives

1

2
mv2 − GMm

R
= 0⇔ 1

2
v2 =

GM

R
. (38)

Considering the existence of maximum velocity v = c, for radius R < 2GM
c2

no particle can escape
to infinity (this argument was presented already by Michell and Laplace). In other words, for a
spherical object if the rate GM

c2R
is larger than 1

2 no light can escape. Remarkably, this estimation
in Newtonian theory results to be exact when revisited in the context of General Relativity, as
we will see in Lecture 5. This justifies the use of (37) as the relevant parameter in this context.
We provide

Object M (M�) R (km) Density (kg/m3) Ξ

Earth 3× 10−6 6× 103 5× 103 10−10

Sun 1 7× 105 103 10−6

White Dwarf ∼ 0.1− 1.4 ∼ 104 1010 10−4 − 10−3

Neutron Star ∼ 1− 3 ∼ 10 1018 0.2
Stellar Black Hole (spherical) >∼ 3 9(M = 3M�) - 0.5
Stellar Black Hole (extremal) >∼ 3 4.5(M = 3M�) - 1

Massive Black Hole ∼ 109 20U.A. - 0.5− 1

4.1.2 Types of black holes

Attending to their mass we can classify black holes in different types:

i) Stellar mass black holes: M ∼ 3− 30M�.

These black holes are predicted by the gravitational collapse description discussed above,
starting from highly massive stars. In this sense, they were predicted by the theory.
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ii) Massive and supermassive black holes: M ∼ 105 − 109M�.

Black hole of these masses came as a surprise from the need to explain the sources of energy
associated with quasars (quasi-stellar objects). These are objects at very far distances
emitting enormous amounts of energy and finally identified with active galactic nuclei
emitting in X-ray, ultraviolet and radio. The emission is around three orders of magnitude
that of the total optical luminosity of the parent galaxy. Supermassive black holes at the
center of the galaxy offer a mechanism for the generation of such amounts of energy, at
the expense of their huge gravitational energy. Along the years the black hole paradigm
has become established in the understanding of the properties and evolutions of galaxies.

iii) Intermediate mass black holes: M ∼ 103M�

There is no unambiguous evidence of the existence of black hole with these masses. They
can play an important role in certain astrophysical processes and could be natural inter-
mediate stages between stellar and massive black holes. However there is no observational
evidence of their existence.

iv) Primordial black holes: mass up to ∼ 1M�.

These are hypothetical black holes formed at early stages in the cosmological evolution of
the Universe from the collapse of overdense matter regions. They could play an important
role to explain the formation of cosmological structures in the Universe.

4.1.3 Evidence of black holes

i) Stellar black holes. Best candidates for stellar black holes are in binaries in which the
companion is a normal (non-compact star) providing a flow of material into the black
hole. Such material is heated as it forms an accretion disc, emitting in X-rays. From the
determination of the orbital parameters one can infer the mass of dark object. If the mass
is over 3M� is a candidate for a black hole and one aims to refine the assessment as a black
hole. For this, one can try to identify some of the signatures about the black hole presence
provided by general relativity, e.g. i) absence of a rigid boundary surface, existence of an
innermost stable circular orbit (see Lecture 9) affecting the properties of matter accretion
discs, broadening of the FeKα line by gravitational redshift, characteristic distribution of
mass and rotation multipoles...

See Table 1.1 in [1] for the best known 22 candidates. These studies, together with evo-
lutionary models and observation of massive stars indicates that stellar black holes are
actually very common objects. In our galaxy, the Milky Way, they are estimated to be
around 108 − 109, something corresponding to a fraction around 10−2 − 10−3 of the total
number of stars (around 1011 in the Galaxy).

From an astrophysical point of view, stellar mass black holes are important ingredients
in the explanation of jet structure of so-called micro-quasars or in models of (long) γ-ray
bursts.

ii) Massive black holes. Although the mechanism of formation of these black holes is not
known, massive and supermassive black holes stand as key ingredients in the most probable
explanation of the galactic nuclei activity.

These black holes are at the core of the mechanism for the emission of relativistic jets.
They are also able to provoke the tidal disruption of non-compact stars falling onto them
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and showing a characteristic flares in the electromagnetic spectrum. Maser radiation from
quasars also opens a tools to measure parameters of black holes. Finally, it is worthwhile
to note that quite recent observations of individual stars of the galactic center of the Milky
Way (namely SgrA∗) have permitted to establish the mass of the black hole at the center
of our Galaxy as 4.6 · 106M�. The tools are very similar to the ones employed in the
determination of the mass from the kinematics of binary systems.

Before ending this subsection we note that black holes in general, and binary black holes in
particular, stand among the most important sources of gravitational radiation (see Lecture
11). The gravitational radiation emitted from the surrounding of a black hole portrays very
characteristic signals of the dynamical spacetime geometry. In this sense, the ultimate tool to
identify a compact object as a black hole is provided precisely from the radiation made of the
same fabric as black holes: spacetime dynamics.

4.1.4 Black holes as basic objects in General Relativity

Black holes are not only relevant because of the role in some of the most violent events in the
Universe in astrophysical and cosmological scenarios. They are objects of enormous theoretical
interest on their own: on the one hand they represent particularly simple and clean probes into
the strong-field regime of general relativity, and on the other hand they stand as a cornerstone
piece in the puzzle of bringing together physics at different level of description, namely gravity,
quantum mechanics and thermodynamics.

We simply list here some of the relevant aspects of black holes at a theoretical level:

• Simple classical objects. Black holes are simple strong gravity solutions in General Rela-
tivity. In fact, due to the “no-hair” theorems, in stationarity they are so simple that they
can be described only and completely by two parameters. This is extraordinarily singular
for a macroscopic object.

• Two-body problem in general relativity. Given that general relativity deals essentially with
extended objects, the resolution of the motion problem is a very complicated problem by
itself, that becomes only more complicate if we add the complexity associated to matter
structure. In this sense, black holes provide a particularly clean “equation of state” to
study in particular the binary problem in general relativity without having to bother
simultaneously with hydrodynamical, rather than gravitational dynamics.

• Probes into general relativity strong-field regime. General relativity is well tested in the
regime of weak gravitational fields, in particular through the dynamics of binary pulsars.
However, the dynamics of the strong field regime and in particular the control and under-
standing of the decay properties of fields propagating in a strongly dynamical spacetime
are poorly understood. Black holes provide a particularly suited probe to study both the
stationary and dynamical aspects of the classical gravitational field.

• Black hole thermodynamics. The application of general relativity to black hole dynamics
leads to a series of laws in perfect analogy with those of thermodynamics. The analogy
reached a sounder physical status after the understanding by Hawking that a black hole
actually radiate energy according to the black body spectrum of an object in thermal equi-
librium, when semiclassical corrections are taking into account. This thermodynamical-like
result stands as a solid prediction of the interplay between gravity and quantum mechanics
and offers a test for any theory attempting to develop a quantum description of gravity.
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• Cornerstone at the gravity, quantum mechanics and thermodynamical crossroad. The sta-
tistical mechanics understanding of the entropy of a black hole in terms of the number
of states of the underlying system, is one of the most important task in approaches to
quantum gravity. It offers a test, but also insight to develop avenues into the problem
of marrying gravity and quantum mechanics. On the other hand, the evaporation of the
black hole through Hawking radiation raises the issue of the unitarity of the black hole
evolution description, leading to the black hole information loss problem.

• Black holes in higher dimensions. Motivated by quantum gravity scenarios involving higher
spacetime dimensions (namely string theory), there is an interest in understanding classical
solutions in higher dimensions presenting an event horizon. First, the uniqueness results
associated with the “no hair” property of black hole is lost, offering a more complex
panorama. Second, so-called micro black holes of up to ∼ 1M� appear in speculative
theories inspired in so-called brane worlds. Third, unexpected mathematical properties
shared with four-dimensional black holes are maintained (namely the so-called hidden-
symmetries), calling for a still missing explanation.

5 Summary of Lecture 1

1. Gravitational collapse and mass:

i) Compact stars: radius decreases with mass.

ii) Maximal mass for white dwarfs and neutron stars.

iii) No known mechanism to stop the collapse above ∼ 3M�.

2. Black holes as a dramatic extreme case of light bending:

i) Tension: Special Relativity AND Gravity.

ii) Gravitational Redshift: incompatibility with flat spacetime.

iii) Spacetime curvature: bending of light.

3. Standard picture of classical gravitational collapse:

i) Chain of theorems and conjectures.

ii) A conceptual framework for black holes (...and a “Course Program”).

iii) Every point in the framework is challenged.

4. Interest in Black Holes:

i) Astrophysical and Cosmological.

ii) Clean probe into the structure of the gravitational theory: General Relativity.

iii) A key to physics unification and to new physics.
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