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Abstract

General invitation to the course.
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1 Lecture 2: Gravity as spacetime curvature I: manifolds, ten-
sors, spacetime metric

1.1 Events in spacetime: manifolds and coordinates

Notion of manifold to describe events in space and time. Absence of a priori given structures in

General Relativity: all objects are fixed dynamically. Coordinates understood as labels without

intrinsic meaning: need of coordinate independence of physical statements.

1.1.1 The manifold of physical events

Newtonian description. Let us start by considering the description of a point-like physical
process happenning in space and time in the context of Newtonian physics. A basic tenet in the
theory is the existece of a special class of reference frames in which Newton laws apply: these
are called inertial frames. This provides an “a priori” structure in the theory, “rigid” in the
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sense that does not results from any dynamical equations. In particular, such frames provide a
set of spatial coordinates (x, y, z) and a time coordinate t, permitting to asignate a coordinate
time and a coordinate position to a physical “event” p, say the presence of a particle:

p 7→ (tp, xp, yp, zp) (1) {e:ptox}

Considering a physical point-like particle to fix ideas, its evolution in time and space is described
by a “trajectory” parametrized be a label λ:

p(λ) 7→ (tp(λ), xp(λ), yp(λ), zp(λ)) (2)

In Newtonian physics, t is a universal parameter and it is natural to use λ = t so that
xp(t), yp(t), zp(t)) describe the trajectory. In writing down the dynamical equations, we have
freedom in choosing (x, y, z) up to a Galilean tranformation: translations, rotations and boosts.

t′ = t+ t0 , ~x
′ = ~x− ~a , ~x′ = R(ε) · ~x , ~x′ = ~x− ~vt , R(~ε) ∈ SO(3) (3) {Galilean_transf}

Here ~ε can be parametrised, say, by the Euler angles. As an example of a rotation, we make
explicit the rotation of angle ϕ (Euler angle α) around the z axis, mixing the x and y coordinates

R(ϕ, 0, 0) =

 cos θ sin θ 0
− sin θ cos θ 0

0 1

 (4) {e:rotation}

Otherwise, the coordinates (x, y, z) have a geometric content as associates to inertial frames. In
particular rotations preserve the Euclidean metric in R3: diag(1, 1, 1).

Special relativity. The same reasoning essentially applies to special relativity. Although time
is no longer abosolute, the notion of inertial frame exists, providing an a priori structure for the
description of physical events. The freedom in the choice of x = (ct, x, y, z) is up to a Poincaré
transformation, where time and spatial coordinates are “mixed”

x′ = a + Λ · x , (5) {e:Poincare}

where matrices Λ preserve the Minkowski metric diag(−1, 1, 1, 1) in R4, spanning the Lorentz
group SO(1, 3). We make explicit the form of a boost along the x direction with velocity v

ct′

x′

y′

z′

 =


γ −v

cγ 0 0
−v
cγ γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z

 (6)

with γ =
√

1− (v/c)2. Noting γ2 − (v/c)2γ2 = 1 we can write the boost matrix as
coshα − sinhα 0 0
− sinhα coshα 0 0

0 0 1 0
0 0 0 1

 (7) {e:boost_alpha}

where tanhα = −v/c. Note that, as the rotation R in (4) mixed coordinates x a y, the boost
trasnformation in (7) acts as a kind of rotation in the (t, x) subspace. In sum, also in special
relativity a geometric meaning is associated to the coordinate structure of inertial frames.
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General Relativity. A basic tenet in the general relativistic description is that all structures
in the theory must be determined dynamically, through the resolution of the appropriate equa-
tions. In particular, this means that the a priori notion of inertial reference frame is absent.
Still, in order to have an analytical description, we need to associate to a physical event p some
“labels” (t, x, y, z), as in (1). However, now the “coordinates” (t, x, y, z) are completely devoid
of geometric or physical meaning. They are simply labels without intrinsic meaning and the
dynamical description should be independent of them.

Physical statements must be also independent of the choice of coordinates. As an example,
the coordinate description of an object trajectory has no intrinsic physical meaning. Different
descriptions are possible, none of them being privileged. But the meeting of two objects along
its dynamical evolution has an intrinsic physical meaning: the fact that the two trajectories
cross is independent of the coordinate description. This provides an example of an spacetime
“event”.

[Figure crossing of two trajectories]

Spacetime manifold. Spacetime is the ensemble M of all physical intrinsic events. As such,
M an abstract space. We require some structure on this space1.

In particular, we require that spacetime events can be locally parametrized by formal time
and space labels. That is, although the global description of M as a whole can be complicated,
locally it should look like R4: we require that M can be locally patched to open sets in R4.

This leads to the notion of local chart, that is simply a way of parametrizing a open set
U ∈M by an open set Ũ :

ϕ : U → Ũ ∈ R4

p 7→ xµ ≡ (x0, x1, x2, x3) (8)

We do not have “access” directly to p, but to its coordinate representation xµ = (x0, x1, x2, x3).
The coordinate representation has no physical/geometrical content, and different labelings are
possible:

ϕ1 : U1 → Ũ1 ∈ R4 , ϕ2 : U2 → Ũ2 ∈ R4

p 7→ (x0, x1, x2, x3) , p 7→ (y0, y1, y2, y3)
(9)

so that

φ2 ◦ φ−11 : Ũ2 → Ũ1

(x0, x1, x2, x3) 7→ (y0, y1, y2, y3) (10)

[Figure charts]
In simple terms this represents a change of coordinates in the local description of M in

U1 ∩ U2: 
y0 = y0(x0, x1, x2, x3)
y1 = y1(x0, x1, x2, x3)
y2 = y2(x0, x1, x2, x3)
y3 = y3(x0, x1, x2, x3)

(11) {e:changeofvariables}

The spacetime st M is covered by a collection of charts (Ui, ϕi). The collection of charts is called
an atlas of M . This confers M with the structure of a (topological) manifold.

1The first thing we should require is a topology on this set, i.e. a notion of local “neighborhoods” in M
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1.2 Vectors and tensors. Lie derivative

Vectors on a manifold: tangent space. Vectors as derivations. Contravariant and covariant tensors.

Tensors as local (point-like) objects on the manifold. Passive and active views of coordinates

changes (diffeomorphisms): push-forward and pull-back transformations. Lie derivative as tensor

variation along an infinitesimal diffeomorphism.

1.2.1 Linear approximation of the spacetime: tangent plane

We need more structure in order to manipulate efficiently the geometrical/physical objects. In
particular, we want to be able to approximate the manifold M by linear structures: essentially
what we do very well is linear algebra.

figure derivative
This is in the very same way that we may aproximate a non-linear function f(x) at a point

x0 by its derivative

f(x) ∼ f(x0) + x
df

dx
(x0) , (12)

or, more generally, a non-linear application between two spaces by its differential (actually
characterized as its best linear approximation).

In this sense, we want to be able to approximate M close to a given point p by a tangent
plane TpM . This tangent plane is provides a linear approximation to M .

1.2.2 Vectors as curve derivatives.

A first way to look at the vectors of this linear space is as the derivatives of curves passing
through p. In a coordinate description2 in coordinates {xµ}, the curve γ : R → U passing
through p, with p = γ(0), is represented as

γ : R → ϕ(U)

λ 7→ xµ(λ) = (x0(λ), x1(λ), x2(λ), x3(λ)) (13)

We introduce the components of a vector V at TpM in a basis associated with coordinates {xµ},
as

V µ =
dxµ

dλ

∣∣∣∣
λ=0

=


dx0

dλ
dx1

dλ
dx2

dλ
dx3

dλ


∣∣∣∣∣∣∣∣∣
λ=0

(14)

In order to make this vector notion independent of the choice of coordinates, we must impose
coordinate changes (11) to be differentiable. Indeed, rewriting the same curve γ in a coordinate
system (y0, y1, y2, y3), and using (11) we find3

dyµ

dλ

∣∣∣∣
λ=0

=

(
∂yµ

∂xν

)∣∣∣∣
λ=0

dxν

dλ

∣∣∣∣
λ=0

(15)

2An intrinsic definition of a vector not referring to particular coordinates, can be done in terms of classes of
equivalence of curves

3This is the first encounter to the so-called index convetion of summation of repeated indices.
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where the Jacobian matrix
(
∂yµ

∂xν

)
(
∂yµ

∂xν

)
=


∂y0

∂x0
∂y0

∂x1
∂y0

∂x2
∂y0

∂x3
∂y1

∂x0
∂y1

∂x1
∂y1

∂x2
∂y1

∂x3
∂y2

∂x0
∂y2

∂x1
∂y2

∂x2
∂y2

∂x3
∂y3

∂x0
∂y3

∂x1
∂y3

∂x2
∂y3

∂x3

 (16) {e:Jacobian}

provides the linear change between the basis exµ and eyµ associated to coordinates {xµ} and

{yµ}. As we see, this requires the differentiability of the changes of charts φi ◦ φ−1j between any

elements of the atlas Uj and Ui. This defines a differentiable manifold4.

1.2.3 Vectors as derivations: directional derivatives of a function.

A useful caracterization of the vectors of the tangent space TpM is given by a generalization of
the notion of directional derivative of a function. Let us consider the coordinate representation
of a function f : M → R, in coordinates {xµ}:

f : Ũ1 → R
xµ 7→ f(xµ) = f(x0, x1, x2, x3) (17)

Let us consider the directional derivative of f along a vector V µ. In order to evaluate it, we
consider a curve γ(λ), such that V µ = dxµ/dλ and calculate

df

dλ
=

∂f

∂xµ
dxµ

dλ
=

∂f

∂xµ
V µ =

(
V µ ∂

∂xµ

)
f = V (f) (18)

where we can denote the vector V as V = V µ∂µ can be understood as a derivation on functions.
This approach provides a natural notation for the linear basis eµ at TpM associated to {xµ},

as derivations along the coordinates xµ

exµ ≡
∂

∂xµ
(19)

When there is no possible confusion in the coordinate basis, we will denote ∂µ ≡ ∂
∂xµ . Therefore

we can write the vector V as

V = V µ∂µ (20)

1.2.4 Tangent space TpM and dual tangent space T ∗pM .

The dual space T ∗pM to TpM is the set of linear applications

ω : TpM → R (21)

Reciprocally, vectors in TpM can be seen as linear applications

V : T ∗pM → R (22)

4Other kind of manifolds can be considered by imposing other conditions on chart changes. For example,
analytic manifolds consists in imposing analyticity on φi ◦ φ−1

j
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Once the basis exµ on TpM associated with a coordinate system {xµ}, we can introduce the dual
basis on T ∗pM , ωµx , as

ωµx(exν) = exν(ωµx) = δµν (23)

A geometric understanding of ωµx comes naturally in terms of the differential of a function. Let
us consider the differential df of f (as an application f : U1 → R), that provides a formal
infinitesimal variation df that we can denote as

df =
∂f

∂xµ
dxµ (24)

df can be seen as an element in the dual T ∗pM by defining

df(V ) = V (df) ≡ V (f) (25)

Then, the differentials dxµ can be seen to provide the basis ωµx in T ∗pM , dual to exµ

ωµx = dxµ

ωµx(exν) = dxµ
(

∂

∂xν

)
=

∂

∂xν
(dxµ) =

∂

∂xν
(xµ) = δµν (26)

Gradients, vectors, directional derivatives. A generalization of the standard gradient ∇f
of a function is provided by df . Contracting the gradient with a given vector V µ, we construct
the directional derivative along V µ. The latter is given above by V (f) = V (df). It is useful to
introduce a notation in terms of the “nabla” operator

∇f = df = ∂µfdx
µ = ∇µfdxµ (27)

∇V f = V (df) = V (f) = V µ∂µ(f) = V µ∇µf (28)

where ∇µf = ∂µf .

1.2.5 Vector and tensor fields

Up to now, all considered vectors live in a tangent space TpM associated to a given point p in
M . We can consider now the ensemble of all tangent spaces, defining the tangent bundle TM .
Analogously one introduces the dual tangent bundle

TM =
⋃
p∈M

TpM , T ∗M =
⋃
p∈M

T ∗pM (29)

A vector field V is constructed by assigning to every point p ∈M a vector in its tangent space

V : M → TM (30)

p 7→ Vp ∈ TpM (31)

and, analogously, a 1-form α as

α : M → T ∗M (32)

p 7→ αp ∈ TpM (33)
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Using the linear duality of TM and T ∗M , vector fields and 1-forms are characterized as linear
mappings

V : T ∗M → R , α : TM → R (34)

This permist to introduce more general class of fields, tensor fields as multilinear mappings

T : T ∗M ⊗ T ∗M ⊗ ...n) ⊗ TM ⊗ TM ⊗ ...m)TM → R (35)

Bases for tensors can be constructed as tensor products of basis eµ on TM and wµ on T ∗M , so
that

T = Tµ1µ2...µnν1ν2...νm∂µ1 ⊗ ∂µ2 ...⊗ ∂µn ⊗ dxν1 ⊗ dxν2 ...⊗ dxνm (36)

The tensor T , or simply Tµ1µ2...µnν1ν2...νm , is said to be n-times contravariant and m-times
covariant.

Tensors as point-like and linear objects. Note that from the very construction
In addition, their linear character guarantees the following key property: If a tensor vanishes

in a certain coordinates system, it vanishes in all coordinates systems

1.3 The metric tensor. Metric type of vectors.

The spacetime is more than the collection of occurring physical “events”. It must be endowed
with a structure capable of determining which are the spacelike directions, the timelike directions
and the directions followed by light rays, as well as spatial and time distances between events.

Following the model of special relativity, this is accomplished by introducing an additional
structure to the differentiable manifold M , namely a (non-degenerate) Lorentzian metric tensor
g. A spacetime is then given by the couple (M, gµν).

1.3.1 Metric tensor

A metric tensor g is a 2-times covariant tensor

g = gµνdx
µ ⊗ dxν (37)

satisfying:

i) It is symmetric: gµν = gνµ.

ii) It is non-degenerate: if V is such that g(V ,W ), ∀W , then V = 0

The symmetric tensor gµν can be diagonalized at each point p ∈ M . If at each TpM , a basis
can be chosen such that (the non-degeneracy conditions guarantee that there are no zeros in the
diagonal).

gp =


−1

1
1

1

 (38)

then we say that the metric g is of Lorentzian type.
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Raising and lowering of indices. The metric gµν provides a canonical isomorphism between
TM and T ∗M , not depending on coordinates. Indeed, given its non-degenerate character we
consider the metric tensor on T ∗M whose component expression, denoted as gµν is given by
the inverse matrix of gµν . That is

gµρgρν = gνρg
ρµ = δµν (39)

Then, given a contravariant vector V µ and a covariant vector αµ, we construct the associated
covariant and covariant vectors, respectively, as

Vµ ≡ gµνV ν , αµ ≡ gµναν (40)

This operations are usually referred to as lowering and raising indices.

1.3.2 Norm of a vector, metric type and light cone.

The squared-norm of a vector is given by

V 2 = g(V ,V ) = gµνV
µV ν = V µVµ (41)

The Lorentzian nature of gµν permit to classify the vectors in three cathegories

i) Spacelike vectors: gµνV
µV ν > 0.

ii) Timelike vectors: gµνV
µV ν < 0.

iii) Lightlike or null vectors: gµνV
µV ν = 0.

Therefore, the Lorentzian structure of the spacetime permits to introduce at each point p the
notion of light cone, as the set of vectors in TpM of zero norm. Light curves move along light
cones in trajectories with null derivative vector. Particles moving at a speed smaller that light
velocity lay inside the light cones, with timelike derivatives. Finally, particle moving faster than
light, or simply curves joining points that are simultaneous in some coordinate system, have
spacelike derivatives.

[Figure lightcone]

Measuring distances: element of line. The light cone structure of the spacetime allows
us to structurate the spacetime in spacelike, timelike and lightlike directions. But the metric
has more structure (actually very little more, just a scale), permitting us to measure distances
spacelike curves and time intervals along timelike curves. This is provided by the notion of
element of line associated to the metric in a given coordinate system, simply a quadratic form
on infinitesimal displacements in spacetime:

ds2 = gµνdx
µdxµ (42) {e:LineElement}

This can be seen as a generalization of Pythagoras theorem for infinitesinal triangles.
If we consider a spacelike curve γ(λ) parametrized by λ in coordinates {xµ}, i.e. (xµ(λ)),

the evaluation of (42) on γ(λ) gives

ds2 = gµν(γ(λ))
dxµ

dλ

dxµ

dλ
dλ2 . (43)
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For a spacelike curves the arc length can be simply written as

ds =

√
gµν(γ(λ))

dxµ

dλ

dxν

dλ
dλ (44)

With our convention for the spacetime signature (−1, 1, 1, 1), the element of proper time along
timelike curves is given by −c2dτ = ds2, that is

dτ =
1

c

√∣∣∣∣gµν(γ(λ))
dxµ

dλ

dxν

dλ

∣∣∣∣dλ (45) {e:dtau}

1.3.3 Observers.

An observer in General Relativity is provided by a timelike curve γ whose 4-velocity uµ is
normalized to −1, that is

uµ =
dµ

dλ
, uµuµ = gµν(γ(λ))

dxµ

dλ

dxν

dλ
= −1 (46)

Using (45) we can write uµ = dxµ

dτ .

1.4 Minkowski spacetime. Rindler coordinates

The first spacetime we have encountered corresponds to the one in special relativity, corre-
sponding to the absence of gravity. Its line element in coordinates corresponding to an inertial
frame

ds2 = −c2dt2 + dx2 + dy2 + dz2 (47) {e:Minkowski}

Note that Poincaré trasnformations (5) preserve the form of this line element. They are the first
example of isometries. The Minkowski geometry illustrates some of the points in this lecture.
First, note that parametrizing a timelike curve by λ = ct, proper time writes

dτ =

√
1− 1

c2
d~x

dt
· d~x
dt
dt (48)

and an observer

uµ =

(
γ, γ

d~x

dt

)
(49)

with γ = dt/dτ = 1/
√

1− 1
c2
d~x
dt ·

d~x
dt .

1.4.1 Absence of geometric meaning in the coordinates

We have insisted in the absence of a priori geometric meaning in the coordinates in General
Relativity. This is illustrated byy the following example. Consider the metric with line element

ds2 = − 1

t2
dt2 + dx2 + dy2 + dz2 (50)
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for 0 < t∞, −∞ < x < ∞, −∞ < y < ∞, −∞ < z < ∞. This suggests a metric with a bad
behaviour as one approaches t = 0, possibly indicating some geometric non-trivial behaviour in
its vicinity. However, if we make the transformation of variables

t′ = ln t , x′ = x , y′ = y , z′ = z (51)

with 0 < t′∞, −∞ < x′ <∞, −∞ < y′ <∞, −∞ < z′ <∞. we realize that the metric can be
written as

ds2 = −c2dt′2 + dx′2 + dy′2 + dz′2 (52)

where we recognize the familiar Minkowski spactime. We conclude that coordinates (t, x, y, z)
are just labels without any intrinsic meaning.

Remarks.

• i) The expression choice of coordinates actually refers to the freedom in choosing the
functional form of four of the functions in the set of ten functions gµν(x), where {xµ} are
just formal labels without meanings.

In general, for a given metric the remaining six functions cannot be freely chosen (the
freedom in coordinate choice is exhausted). In particular the question of under which
conditions a line element can be trasnformed to the form (47), see [Exercise ...] implies
the resolution of an overdetermined system of partial differential equations, so that in
general has no solution. Only in special cases satisfying certain integrability conditions
the system can be solved. As we will comment later, this integrability conditions are
given in terms of a tensorial quantity, precisely the curvature tensor. In other words, the
gravitaional field.

• ii) The singular behaviour in the metric functions can be due to two reasons: a) an actual
singularity in the metric, b) a pathologic behaviour of the coordinates. Deciding with is
the case is not always easy. The Rindler metric in [Exercise ...] provides a paradigmtic
example of this that illustrates the behaviour that we will find in black holes.

1.5 Exercises: tensor manipulation (indices gymnastics).

• Transformation rules of contravariant and covariant vectors under a coordinate transfor-
mation.

• Transformation of the metric tensor.

• Transdormation of the volume element.

• Coordinate velocity: Is the coordinate velocity of light constant?

• Conformal structure and light cone structure: conformal transformations of the spacetime
metric.
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