2018/19
 Master Mathematical Physics (Dijon) - General Relativity Exam
 17 May (3 hours)

1. i) The following expressions hold for a metric $\boldsymbol{g}=g_{\mu \nu} d x^{\mu} \otimes d x^{\nu}$ in a 2-dim manifold:

$$
R^{\mu}{ }_{\nu \rho \sigma}=\frac{R}{2}\left(\delta^{\mu}{ }_{\rho} g_{\nu \sigma}-\delta^{\mu}{ }_{\sigma} g_{\nu \rho}\right),
$$

where $R^{\mu}{ }_{\nu \rho \sigma}$ is the Riemann tensor and R is the Ricci scalar. Determine the value of α in the expression:

$$
R_{\mu \nu}=\alpha R g_{\mu \nu}
$$

ii) Given now the metric on \mathbb{R}_{+}^{2}, defined by (H is a constant):

$$
\boldsymbol{g}=\frac{H}{y^{2}}(-d t \otimes d t+d y \otimes d y),
$$

calculate the Riemann tensor $R^{\mu}{ }_{\nu \rho \sigma}$, the Ricci tensor $R_{\mu \nu}$, the Ricci scalar R and verify the result in i).
2. Given the Schwarzschild metric in standard coordinates (t, r, θ, φ), consider the change of variables:

$$
\left\{\begin{array}{l}
t^{\prime}=t+2 M \ln \left(\frac{r}{2 M}-1\right) \\
r^{\prime}=r \\
\theta^{\prime}=\theta \\
\varphi^{\prime}=\varphi
\end{array}\right.
$$

i) Write the line element in the coordinates $\left(t^{\prime}, r^{\prime}, \theta^{\prime}, \varphi^{\prime}\right)$.
ii) Consider the radial outgoing and ingoing null trajectories (i.e. θ^{\prime} and φ^{\prime} constant). Determine the ODEs satisfied by these trajectories and sketch the corresponding outgoing and ingoing curves in a $\left(t^{\prime}, r^{\prime}\right)$ diagram, in particular showing the null cones.
iii) Determine the proper time $\Delta \tau$ and coordinate time Δt^{\prime} between the emission of an ingoing radial light ray from an observer at position r_{+}and its reception at r_{-}(with $r_{+}>r_{-}$). If $r_{-}=2 M$, what can be concluded about the new coordinate system as compared with the original one?
3. i) The spacetime metric around a spherically symmetric planet is given by the Schwarzschild metric. We consider two astronauts in a spaceship orbiting the planet at a certain height. At a given time, one of them goes down (fastly, in a time scale δT_{1}) to the planet and stays there for a long time T (namely $T \gg \delta T_{1}$). After this time, he comes back (again fastly, δT_{2} with $T \gg \delta T_{2}$) to the spaceship and meets the astronaut who stayed there. Justify which astronaut is younger at the moment of meeting again.
ii) Given the metric on \mathbb{R}^{3} :

$$
\boldsymbol{g}=f^{2}(z)(d x \otimes d x+d y \otimes d y)+d z \otimes d z
$$

with $f(z)>0$, justify that \boldsymbol{g} is conformally flat.

