2018/19 Master Mathematical Physics (Dijon) - General Relativity Exam 17 May (3 hours)

1. i) The following expressions hold for a metric $g = g_{\mu\nu} dx^{\mu} \otimes dx^{\nu}$ in a 2-dim manifold:

$$R^{\mu}{}_{\nu\rho\sigma} = \frac{R}{2} \left(\delta^{\mu}{}_{\rho} g_{\nu\sigma} - \delta^{\mu}{}_{\sigma} g_{\nu\rho} \right) ,$$

where $R^{\mu}{}_{\nu\rho\sigma}$ is the Riemann tensor and R is the Ricci scalar. Determine the value of α in the expression:

$$R_{\mu\nu} = \alpha R g_{\mu\nu}$$
 .

ii) Given now the metric on \mathbb{R}^2_+ , defined by (*H* is a constant):

$$\boldsymbol{g} = rac{H}{y^2} \left(-dt \otimes dt + dy \otimes dy
ight) \; ,$$

calculate the Riemann tensor $R^{\mu}{}_{\nu\rho\sigma}$, the Ricci tensor $R_{\mu\nu}$, the Ricci scalar R and verify the result in i).

2. Given the Schwarzschild metric in standard coordinates (t, r, θ, φ) , consider the change of variables:

$$\begin{cases} t' = t + 2M \ln\left(\frac{r}{2M} - 1\right) \\ r' = r \\ \theta' = \theta \\ \varphi' = \varphi \end{cases}$$

- i) Write the line element in the coordinates $(t', r', \theta', \varphi')$.
- ii) Consider the radial outgoing and ingoing null trajectories (i.e. θ' and φ' constant). Determine the ODEs satisfied by these trajectories and sketch the corresponding outgoing and ingoing curves in a (t', r') diagram, in particular showing the null cones.
- iii) Determine the proper time $\Delta \tau$ and coordinate time $\Delta t'$ between the emission of an ingoing radial light ray from an observer at position r_+ and its reception at r_- (with $r_+ > r_-$). If $r_- = 2M$, what can be concluded about the new coordinate system as compared with the original one?
- 3. i) The spacetime metric around a spherically symmetric planet is given by the Schwarzschild metric. We consider two astronauts in a spaceship orbiting the planet at a certain height. At a given time, one of them goes down (fastly, in a time scale δT_1) to the planet and stays there for a long time T (namely $T \gg \delta T_1$). After this time, he comes back (again fastly, δT_2 with $T \gg \delta T_2$) to the spaceship and meets the astronaut who stayed there. Justify which astronaut is younger at the moment of meeting again.
 - ii) Given the metric on \mathbb{R}^3 :

$$\boldsymbol{g} = f^2(z) \left(dx \otimes dx + dy \otimes dy \right) + dz \otimes dz ,$$

with f(z) > 0, justify that **g** is conformally flat.