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Chapter 1

An invitation to General Relativity and
gravitational collapse
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1.1 A first glimpse into to Gravity as spacetime curvature

1.1.1 Robust elements in General Relativity

General Relativity explains gravity in terms of curvature of the spacetime. In particular, it
provides a prescription for the determination of such curvature in terms of the presence of mass
and energy in the spacetime, through the so-called Einstein equations.

Beyond the specific details of the theory, we can point out several conceptual elements that
the theory teaches us and that should survive in any theory extending or substituting General
Relativity. Among these elements we make explicit the following ones:

i) Gravitational redshift: light propagating through a gravitational field experiences a dis-
placement in its frequency, in particular shifting to longer wavelengths when passing from
stronger to weaker gravitational fields (an inverse “blue-shift” effect happens when propa-
gating towards strong gravitational fields). Such an effect should survive General Relativity
since it does not depend on the detailed form of the field equations.

i) Gravitational waves: the theory presents local dynamical degrees of freedom (for spacetime
dimensions > 4) associated with the gravitational field, which are absent in the previous
non-relativistic (Newtonian) theory. Such degrees degrees of freedom can be interpreted in
terms of dynamical tidal fields. In this sense, the understanding of gravity in terms of the
tidal deformation of objects acquires a key role in the very development of the theory.
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iii) Frame dragging: a rotating objects “pulls” the spacetime with it, making all nearby objects
experience a “force” entailing them to rotate. Again, this is independent of the detailed
form of the field equations, and refers essentially to some kind of behaviour of spacetime
as an elastic medium that cannot be detached from the material sources creating it.

All these three effects can be referred as kinematical in the sense that qualitatively they are
independent of the particular form of the field equations for the gravitational field and mainly
rely on the structural fact of constructing the theory on a curved spacetime Lorentzian manifold!.
Special relativity offers a description of relativistic motion in the case that gravity can be
neglected. In this section we describe the tension existing between special relativity and the
incorporation of gravity in the picture, ultimately leading to the notion of a curved spacetime:

Special Relativity ) )
Tension — Spacetime curvature

Gravity

The main line of reasoning is that the marriage between light propagation and gravity implies
the existence of a gravitational redshift effect, and that the latter is incompatible with special
relativity, leading to the notion of an intrinsically curved spacetime:

Gravitational Redshift ) .
Tension — Spacetime curvature

Flat spacetime

We follow essentially the discussion in [5].

1.1.2 Gravitational redshift from energy conservation

Let us start by reviewing the original Einstein argument, based on a physical reasoning (namely
energy conservation), leading to the existence of a gravitational redshift.

We dwell here in a Newtonian description of gravity. Let us consider a particle of mass m at
a height L in a constant gravitational field (with g the module of the gravitational acceleration,
so g > 0).

i) Initially the particle is at A and its “rest energy” (special relativity) is:
EA =md® . (1.1)
ii) It falls to B, having a “rest” plus “kinetic energy”:
EB =mc* + mgL . (1.2)
iii) At B, the particle is annihilated producing a photon with (the same) energy:
EﬁL =mc® +mgL . (1.3)

Then the photon goes back upwards to A. If the energy of the photon at A were EpA =
th = mc?+mgL, then we are able to create energy that we can (immediately) use. Indeed,

!These three elements are captured, in a linearized version, in the so-called “optical” scalars that encode the

“expansion”, “shear” and “twist” response of an extended body to the presence of gravitational field, see e.g. [8].
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Figure 1.1: Violation of energy conservation if photons are not gravitationally redshifted.

the photon at A can be transformed into a particle of mass m and some additional energy
(thermal, kinetic...) (see Fig. 1.5.1):

EA =mc® +mgL . (1.4)

We can repeat the process n times after which we have at A a particle of mass m and a
production of extra energy

EA =me 4+ nmgL | (1.5)
producing an arbitrarily large violation of the energy conservation.

The way out is to accept that the photon loses energy when going from B to A: the photon has
to climb the gravity potential as a massive particle would have to. Therefore starting from B
with an energy EﬁL it arrives at A with an energy E}‘?h:

L
Eﬁl:mCQ—l—mgL:ch(l—l-gcT) — Eﬁ:mcg (1.6)

Now Einstein’s argument incorporates another piece of physical reasoning. In particular, at this
point one uses the relation between energy of a photon and its wavelength given by quantum
theory, namely

Epp =hv=hw . (1.7)
Then, using A = ¢/v and the redshift factor z introduced as
AA — AB A
2=

142=22 1.
)\B ’ & )\B ’ ( 8)
one gets
)\A VB hVB EB gL
& AB VA hvy E4 ( 02) ’ (1.9)

and therefore
_ 9L

z =

=z (1.10)
This expression for the redshift of a photon “going up” a gravitational field, deduced by Einstein in
1911 using this chain of heuristic physical arguments, would be indeed experimentally confirmed

only in 1959 by Pound & Rebka [9].
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1.1.3 Gravitational redshift and the principle of equivalence

The previous discussion of the gravitational redshift is physically inspiring, but can be criticized
on consistency grounds. The discussion can be recast in a more systematic (“first-principles”)
form in terms of the key ingredient in the process of the geometrization of the gravitational field:
the equivalence principle. In its more basic form it states:
“All effects of a uniform gravitational field are identical
to the effects of a uniform acceleration of the coordinate system.”

This is a generalization of the simple remark in the context of Newtonian particle dynamics,
where we can write (we assume here equality between the inertial and gravitational mass, in
order to simplify the argument)

d’x d*z d*z’
Y F=—_ — 2 =0;—=— =0, 1.11
e " az 9 dt? (1.11)
with
! 1 2
x :x+§gt . (1.12)
We note that the coordinate system associated to ' moves with a uniform acceleration a = —g

as described by the coordinate system x. In particular, the coordinate x (in the non-accelerated
system) corresponding to the center of coordinates of the accelerated system, i.e. 2/ =0, is

r=a — %th = %at2 ; witha=—g . (1.13)
We say that the reference system associated with z’ is in free fall and we see how a local
gravitational force disappears for a free-falling observer. On the other hand, if we take the
perspective of 2’ as the fundamental one, then there is no gravitational force and the force that
x experiences is of inertial nature, as a consequence of his (“upwards”) acceleration with a = g
from Eq. (1.12), with respect to 2’. This dual vision between inertial and gravitational forces
will be the key to explain test-particle motion in general relativity in terms of geodesics, that
correspond to free falling observers.

Coming back to our discussion on the red-shift, the key element here” is the extension of the
validity of the equivalence principle statement to ALL possible effects, this including electromag-
netic ones, in particular light propagation.

Let us consider again the points A and B above, standing in a constant gravitational field.
At a given moment, a photon « is emitted from A to B. According to the equivalence principle
we can consider an equivalent description from the perspective of a free falling observer (the
system 2’ above), from whose perspective there is no gravitational field but instead the emitter
A and receiver B suffer an upwards acceleration a = g, as expressed in (1.12). We can think of
the “apparent” gravitational field experienced in an accelerated rocket or elevator, in absence of
a gravitational source, cf. Fig.1.1.3

That is, described in the free-falling reference system?® points A and B corresponding to

2 In a manner analogous to the role of the relativity principle that leads to special relativity, where ALL
physical experiments must render the same results for inertial observers.

*Note that, according to the equivalence principle, ' stands as a perfectly valid inertial observer (she/he is
not accelerated! So, along its free fall, she/he follows a straight line) and simply perceives the emitter A and the
receiver B as accelerating upwards. This perspective is the one that will be taken in general relativity, where the
notion of free fall can be given a primitive meaning. Accordingly, in this (local) inertial system the speed of light
1S C.
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Figure 1.2: Photon moving in a constant gravitational field or, equivalently, in an accelerated
frame.

emitter and observer move in a uniformly accelerated motion with a = g as (note Eq. (1.12))

1 1
2y =L+ Qgt2 ; T = §gt2 (1.14)

i) The photon is sent from A at ¢ = 0, so that B receives it at ¢t = t;. The travelled distance

ii)

is* (light propagates in this “inertial” coordinate system at speed ¢ and all calculations in
such inertial frame are standard, only “changes” to other frames need to be adapted to
special relativistic rules)

1
24(0) — 2’z (t1) =ct1 , L— igt% =cty . (1.15)

A second photon (or the next crest in a trainwave) of is sent from A at t = A74 and B
receives it a time Arp after receiving the first photon, that is at t9 = ¢; + A7rg. The
distance traveled by the second photon is

2y (AT4) — 25 (t2) = c(te — ATa) = c(t1 + ATp — ATs) . (1.16)

The left hand side can be re-expressed as

1 1
Ty (ATA) — 25 (te) = 24 (AT4) — 25(t1 + A1) = L + §g(ATA)2 — —g(t; + Atp)?

2
=L+ %g(ATA)z - %gt% — g1 ATp — %QAT% =L- %gt% — gt1A7p + O(AT?) (1.17)
Neglecting second-order terms in A7’s, we can write
L— %gt% — ghiAtp = c(t] + At — ATy) . (1.18)
Subtracting (1.15) from (1.18) we get
—ghAtp = (At — Ara) © Ara = Arp(l+ 9%1) . (1.19)

Finally, approximating at first order from (1.15), ¢; ~ % we get

L
Ars = Arp(1+ %2) . (1.20)

“We will neglect second order terms (such as (2)” or (%)2) in the following discussion.
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Figure 1.3: Diagram for Schild’s argument on the incompatibility between gravitational redshift

and flat spacetime.

iii) Now, expressing the time intervals A7’s in terms of frequencies, AT = 1/v we write

vp=vA(l+ =) , (1.21)

from where, again

AA VB gL
1 _ _ —(1+ 2= 1.22
+r=10= =047, (1.22)
and
gL

as in Eq. (5.25).

1.1.4 Gravitational redshift implies curvature of spacetime

The previous discussions have led us to the notion that light propagating in a gravitational field
gets redshifted. We can accept this either from Einstein’s physical argument, or as a consequence
of the equivalence principle, or simply as an experimental fact from Pound & Rebka experiment.

On the other hand, special relativity has already shown that a consistent description of
particle kinematics and electrodynamics involves a spacetime perspective on space and time.
Space and time are recast in a single geometric structure modeled as a linear space endowed with
a flat metric of Lorentzian type: the Minkowski spacetime. At this point we show, following an
argument of Schild (see Fig. 1.1.4), that the presence of a gravitational redshift is incompatible
with the existence of a flat spacetime like in special relativity. Schild’s argument is independent
of the detailed mathematical description of the gravitational field. Only stationarity plays a key
role in the argument. Let us consider two observers A and B at rest one with respect to the
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Figure 1.4: Wave train of signals emitted from B towards A.

other and with respect to the Earth (namely, the source of the gravitational field). Whatever
the nature of the gravitational field is, it will present a stationary configuration.

At some given time, a signal is emitted from B towards A. Let us assume that it is a periodic
signal with IV cycles. Then (see Fig. 1.1.4)

N =vpArp (1.24)

with vp the frequency and Atp the elapsed time of the signal.
The receiver at A receives the N cycles in a time A7y, so that

N =vaATy (1.25)

and
VAATA = vBATE . (1.26)
According to previous discussions, if a redshift is present we have vp > 4 and, as a consequence
ATq > AT . (1.27)

However, since the gravitational field is static and the observers do not move, trajectories v;
and 9 of the respective photons must be congruent curves, i.e. 71 and o are the sames curves
except from their positions in the space-time picture. If such curves are placed in a flat space
and time diagram (namely, the spacetime), they must form a parallelogram, so that

ATy = ATp (1.28)

in contradiction with (1.27). This contradiction indicates that the flat spacetime of special
relativity, namely Minkowski spacetime, is not adequate for the description of gravity (if we
want to make it compatible with the existence of gravitational redshift). If we want to stick to
the spacetime vision of space and time provided by special relativity, then we must renounce
to spacetime flatness. In particular, initially parallel light trajectories can start converging and
diverging, in general bending in a curved spacetime. More generally, in this geometric spacetime
perspective the presence of a gravitational field is realised through the curvature of spacetime.
General Relativity provides a definite self-consistent manner of introducing physical sources to
this spacetime curvature, namely through energy and stress of matter. At the same time, it
endows this spacetime curvature, namely the gravitational field, with specific dynamics.
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1.1.5 Towards the fixing of curvature: gravitational field and tides

As we have just seen, the existence of a gravitational redshift together with the notion of space-
time structure inherent to special relativity, leads to the need of curvature of such spacetime
geometry. But the reasoning gives no clues about the manner of fixing such a curvature. On the
other hand, the equivalence principle amounts to the introduction of infinitesimal (point-like)
observers that do not experience gravitational forces. Two questions emerge therefore for the
previous analysis:

i) How can be determined the curvature of spacetime?

ii) Is there an alternative way in which a free falling observer can detect the presence of a
gravitational field?

Remarkably the notion of tide provides an approach towards both these questions. This leads us
to revisit some features of Newtonian gravity.

Newtonian gravity: particle and field equation

Particle dynamical equation. In Newtonian physics, given an inertial reference system,
equations of motion for particles with respect to a universal time ¢ are given by Newton’s second
law

vdzf

My = F, (1.29)

where m; is the so-called inertial mass and F is a given force. Dynamics are complemented by
a specific prescription of the force F. In the case of the gravitational force F’G exerted by a
point-like object of (active gravitational) mass M on an object of (passive gravitational) mass
mg, the force Fg is given by Newton’s universal gravitational force

Mmyg ,

Fg =G5, (1.30)

!

r—a’

where r = | — 2'| and é, = where Z is the position of the mass my and &’ is the position

|Z—a'|’
of mass M. Combining (1.29) and (1.30) and using (another version of) the weak equivalence
principle, namely m; = my, we find

M
=G e (1.31)

The key point to underline here is that the acceleration of a particle in a gravitational field is
completely independent of the nature of that particle, only depending on the mass of the particle
creating the field Eq. ltisa geometric feature in the sense that all particles follow the same
trajectories: it is therefore a property of the background geometry. General relativity will take
this to a foundational level: it is in this sense that the theory is fundamentally geometric, and
not in the sense of its capability to be formulated in a covariant way (coordinate independent).
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Field equation. A important conceptual step towards general relativity is the introduction
of the notion of field. In particular, the gravitational field Eg created by a particle of mass M
placed at Z’ on a arbitrary point Z is given by

Eq = —G%ér , (1.32)
so that when placing a particle of mass m in this field EG it experiences a force
Fg=mEg . (1.33)
The field EG can be written in terms of a gravitational potential ¢ as
Eqc=-Vé, (1.34)
where
¢ = —G% . (1.35)

Newton’s prescription (1.30) for the gravitational force can be recast in terms of an equation for
¢. For this, consider a continuous distribution of mass with mass density p(Z) in a region D.
From (1.32) we can write

Eq(¥) = -G v ————=da 1.36
G(x) Dp(x)’f_i”’g T ( )
If we now calculate the divergence V-E , and use
- - o
we obtain
V- E = —4nGp(Z) . (1.38)

On the other hand, taking the divergence in (1.34) we obtain V - E = —A¢. Finally, we can
write

A¢p = 471G p(T) (1.39)

This is Poisson’s equation, that we have obtained from Newton’s expression for the gravitational
force. In other direction, if we consider a pointlike source with density p(Z) = M §(Z — &), we
can solve’ Poisson’s equation (1.39) to obtain (1.35) and therefore Newton’s law (1.30) through
(1.34) and (1.33). In this sense, Newton’s force and Poisson’s equation are equivalent. At the
Newtonian level we can take the perspective we prefer, at the relativistic level Poisson’s expression
will be the natural starting point.

5Use
1

i

—476 (% — &) . (1.40)

Note that, consistently with (1.34) and (1.36) we can write

N P(f/) 3, 7
(%) = G/D |i”—f’\d x, (1.41)

so that Poisson’s equation follows directly from the application of (1.40).
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Tides and free fall. As we have discussed in section 1.1.3, a pointlike observer in free-fall is
not able to tell about the presence of a gravitational field: its acceleration vanishes. Generalizing
slightly the discussion above around Eq. (1.12), let us consider a gravitational potential ¢ = ¢(%)
and a particle whose instantaneous position in an inertial reference system is £ = #,. Noting

from the previous discussion @ = % = —V¢(Z), we can make the change of coordinates
=/ - = 1 —,2
T :x—xo—ggt , (1.42)
with § = —V¢(Z,) (note 7 is evaluated at &, at this gradient). Taking second time derivatives
we find
i =d—§=-Vo(@ + Vo, , (1.43)

which vanishes at x,. So a pointlike particle cannot tell if it is falling, by what she experiences
at that point.

But there is a manner of telling, if one looks to another closely falling observer, separated at
a distance /. Indeed, we can evaluate

—

A(Z+0) = a(@) + 0 Va(d) + o(f) . (1.44)

—

Neglecting orders higher than the linear one, we find that the difference 6@ = a(Z + ¢) — @(Z) of
accelerations satisfy (using @ = Eq = —V¢)

‘ - 0% i
dai = UV j(Eq)i = —¥ 5o = —U'Eji | (1.45)
where gij
820
€ij = 0x'dxd (146

is the so-called tidal tensor, corresponding indeed to the gradient of the gravitational field (tides).
The tidal acceleration da; is non-local, it depends linearly on the separation £ between free-falling
observers, but the tidal tensor field is indeed local. We make two remarks:

i) In contrast with the field Eg, it cannot be eliminated in a point by local coordinate of
transformations: it demonstrates the presence of a gravitational field by comparing the
effect on nearby free falling objects.

ii) The field equation of Newton’s theory of gravity, namely Poisson’s equation is obtain by
imposing that the trace of the tidal tensor is prescribed by (47G times) the density of
matter:

0%¢

General relativity will follow the spirit of these two remarks above:

i) Free-falling particles will follow trajectories of vanishing 4—acceleration. Gravity will mani-
fest by the relative acceleration of these non-accelerated trajectories, geometrically encoded
in the (Riemann) curvature that represents a tidal field.
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Figure 1.5: Tidal deformations, modifying the trajectories of particles in free fall.

ii) Einstein equations will follow by prescribing the trace of the tidal (curvature) field to be
fixed by the appropriate generalization of the mass density in Newtonian dynamics to the
appropriate notion in special relativity (namely the so-called stress energy tensor).

Example. Consider the gravitational potential created by spherical distribution of mass M in its
exterior

¢:—G¥  (1.48)

with » = \/22 + y2 + 22. Then, the calculation of the tensor field yields

GM
gij = —7715 (BIEZQCZ — (SijT’2) . (149)

In particular, if we consider a test particle at & = (0,0, z) we find

. 10 0
M
&= 5 01 0 , (1.50)
0 0 =2
so that, writing 7= (0x,dy,dz), we find
da; = —0xEy, = —5:1:G—];/[
r
GM
day, = —0yEyy = —5y?
2GM
oa, = —0z2E,, = (5ZG73 . (1.51)
T

As a consequence, a set of free-falling particles are pull apart in the falling direction and are
squeezed in the transversal one. As the tides on Moon and Earth.

1.1.6 What must be retained.

i) Spacetime presents curvature to account for gravity.
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ii) Curvature is fixed dynamically, in terms of the presence of mass and energy.

iii) No symmetry imposed to spacetime: absence of (global) inertial frames. Coordinates just
labels for events in spacetime and have no intrinsic physical meaning. Inertial observers
are associated with spacetime trajectories in free fall, that is, not subject to acceleration.

iv) (Weak) Equivalence principle: locally (at each point) we must recover special relativity,
since gravitational forces can be eliminated. Light cones persist, “locally” they are un-
touched, but their relative distribution is distorted by the spacetime curvature:

- Light travels along straight lines along these null cones. It is dewviated due to spacetime
curvature.

- Massive particle travel inside the null cones.

- In the absence of forces additional to gravity, particles follow trajectories of vanish-
ing 4—acceleration, this corresponding to geodesics in the spacetime structure and
physicall corresponding to inertial observers in free fall.

- In particular, light cones can be “forced to turn” in the field of rotating bodies: frame
dragging.

1.2 Classical collapse: standard relativistic paradigm

As discussed above, a characteristic feature of General Relativity and, more generally of theories
modeled on curved spacetimes, is the bending of light. Black holes constitute a dramatic extreme
in which the light bending is so strong that it cannot leave a certain compact region of the space.

A natural starting point to the study of black holes is to consider the ultimate fate of stars
of sufficiently high mass. This gravitational collapse approach is not the only possible avenue to
the black hole problem, but it has the virtue of providing a general framework that illustrates
some of the main aspects, not only of black hole physics, but also of gravitational physics, this
including in particular General Relativity. Moreover, it also follows the historical route to the
topic.

Let us give a brief overview of the current standard picture of classical gravitational col-
lapse, that constitutes what one might call the establishment picture of gravitational collapse.
This consists in a heuristic chain of theorems and conjectures providing a general conceptual
framework:

i) Singularity theorems (Theorem). If enough energy is placed in a sufficiently compact region,
such that light bending forces the local convergence of all emitted light rays and so-called
“trapped surfaces” are formed, then a singularity develops in spacetime |7, 3, 4, 2].

i) (Weak) Cosmic Censorship (Conjecture). In order to keep the predictability of the theory,
the formed singularity should be hidden from a distant observer behind a so-called “event
horizon”, giving rise to a black hole region.

iii) Spacetime stability (Conjecture). If general relativity is a physically consistent theory of
gravity, it is natural to expect that a system with a finite amount of energy must be
eventually driven dynamically to stationarity. This is again a conjecture, now about the
stability of a black hole spacetime.
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Figure 1.6: Establishment picture of gravitational collapse. The picture in the right is a Carter-
Penrose spacetime diagram where lightlike rays lay at £45°. The thick line at 45° line represents
the event horizon, separating the black hole region to its left (containing the spacetime singularity
corresponding to the horizontal oscillating line) from the rest of the spacetime.

iv) Black hole uniqueness (Theorems). The eventual stationary state is completely charac-
terized by the mass and angular momentum of a the resulting (Kerr) black hole. This is
usually referred to as the mo-hair property of stationary black holes.

The establishment picture provides a general systematic framework for posing and addressing
issues related to black hole spacetimes. In particular it provides a working program to the study
of many of the key aspects to General Relativity. On the other hand, it must be said that nearly
every single aspect of it is challenged at one place or another in gravitational physics. In quite
a literal sense, the goal of this course is to explain the diagram in Figure 1.2.

1.3 Interest in Black Hole physics

Why should done study black holes? A straightforward valid astrophysical answer could be,
simply, because they are out there. Although this is indeed a valid answer, this does not make
justice to the richness of the subject. Black holes indeed constitute, on the one hand, crucial
ingredients for the understanding of astrophysical and cosmological processes. But, on the other
hand, they also provide clues for the understanding of fundamental issues in the theory as well
as a cornerstone in modern developments in theoretical physics.

1.3.1 Black holes in astrophysics and Cosmology
Compacity parameter

By now we have a general broad picture of the destiny of star attending to its final mass. The
resulting final stage is a compact massive object, namely white dwarf stars, neutron stars or black
holes. One might expect that the key parameter controlling the transition from white dwarfs
to black hokes to be the density of the final object, but this not quite so. Indeed the (formal)
density of supermassive black hole can be indeed very small. The relevant parameter is the one
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controlling the ability of emitted light rays to escape from the object, and this is controlled by
a dimensionless parameter = referred to as the compacity parameter

GM
2R '’

== (1.52)
where M is the mass of the object and R is its characteristic scale (radius). In order to gain a
qualitative intuition of why the radius enters with as R~!, and not as R~3 as it would be the
case for a density, it is enough to consider the Newtonian description of the escape velocity. For
this we consider a particle of mass m emitted with velocity v from the surface of an spherical
object of mass M at radius R. Its total energy is Er = %mvz — G]V%. The escape velocity is
the one that permits the particle to reach an infinity distance with vanishing velocity, so that
FEo = 0. Conservation of energy then gives

Considering the existence of maximum velocity v = ¢, for radius R < 2(55\/[ no particle can escape

to infinity (this argument was presented already by Michell and Laplace). In other words, for a
spherical object if the rate fz—]g is larger than % no light can escape. Remarkably, this estimation
in Newtonian theory results to be exact when revisited in the context of General Relativity, as
we will see in Lecture 5. This justifies the use of (1.52) as the relevant parameter in this context.

We provide

Object M (Mg) R (km) Density (kg/m?) =
Earth 3x 1076 6 x 10° 5% 103 10710
Sun 1 7 x 109 103 10-6
White Dwarf ~0.1-14 ~ 10* 10%0 1074 - 1073
Neutron Star ~1-3 ~ 10 108 0.2
Stellar Black Hole (spherical) >~ 3 9(M = 3My) - 0.5
Stellar Black Hole (extremal) >~ 3 4.5(M = 3Mg) - 1
Massive Black Hole ~ 10° 20U.A. - 05—-1

Types of black holes
Attending to their mass we can classify black holes in different types:

i) Stellar mass black holes: M ~ 3 — 30M.

These black holes are predicted by the gravitational collapse description discussed above,
starting from highly massive stars. In this sense, they were predicted by the theory.

ii) Massive and supermassive black holes: M ~ 10° — 109 M.

Black hole of these masses came as a surprise from the need to explain the sources of energy
associated with quasars (quasi-stellar objects). These are objects at very far distances
emitting enormous amounts of energy and finally identified with active galactic nuclei
emitting in X-ray, ultraviolet and radio. The emission is around three orders of magnitude
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iii)

iv)

that of the total optical luminosity of the parent galaxy. Supermassive black holes at the
center of the galaxy offer a mechanism for the generation of such amounts of energy, at the
expense of their huge gravitational energy. Along the years the black hole paradigm has
become established in the understanding of the properties and evolution’s of galaxies.

Intermediate mass black holes: M ~ 103Mg

There is no unambiguous evidence of the existence of black hole with these masses. They
can play an important role in certain astrophysical processes and could be natural inter-
mediate stages between stellar and massive black holes. However there is no observational
evidence of their existence.

Primordial black holes: mass up to ~ 1Mg,.

These are hypothetical black holes formed at early stages in the cosmological evolution of
the Universe from the collapse of over-dense matter regions. They could play an important
role to explain the formation of cosmological structures in the Universe.

Evidence of black holes

i)

ii)

Stellar black holes. Best candidates for stellar black holes are in binaries in which the
companion is a normal (non-compact star) providing a flow of material into the black
hole. Such material is heated as it forms an accretion disc, emitting in X-rays. From the
determination of the orbital parameters one can infer the mass of dark object. If the mass
is over 3M, is a candidate for a black hole and one aims to refine the assessment as a black
hole. For this, one can try to identify some of the signatures about the black hole presence
provided by general relativity, e.g. i) absence of a rigid boundary surface, existence of an
innermost stable circular orbit (see Lecture 9) affecting the properties of matter accretion
discs, broadening of the FeKa line by gravitational redshift, characteristic distribution of
mass and rotation multipoles...

See Table 1.1 in [1] for the best known 22 candidates. These studies, together with evo-
lutionary models and observation of massive stars indicates that stellar black holes are
actually very common objects. In our galaxy, the Milky Way, they are estimated to be
around 108 — 10%, something corresponding to a fraction around 10~2 — 1072 of the total
number of stars (around 10'! in the Galaxy).

From an astrophysical point of view, stellar mass black holes are important ingredients
in the explanation of jet structure of so-called micro-quasars or in models of (long) ~-ray
bursts.

Massive black holes. Although the mechanism of formation of these black holes is not
known, massive and supermassive black holes stand as key ingredients in the most probable
explanation of the galactic nuclei activity.

These black holes are at the core of the mechanism for the emission of relativistic jets.
They are also able to provoke the tidal disruption of non-compact stars falling onto them
and showing a characteristic flares in the electromagnetic spectrum. Maser radiation from
quasars also opens a tools to measure parameters of black holes. Finally, it is worthwhile
to note that quite recent observations of individual stars of the galactic center of the Milky
Way (namely SgrAx) have permitted to establish the mass of the black hole at the center
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of our Galaxy as 4.6 - 10M. The tools are very similar to the ones employed in the
determination of the mass from the kinematics of binary systems.

Before ending this subsection we note that black holes in general, and binary black holes in
particular, stand among the most important sources of gravitational radiation (see Lecture 11).
The gravitational radiation emitted from the surrounding of a black hole portrays very charac-
teristic signals of the dynamical spacetime geometry. In this sense, the ultimate tool to identify
a compact object as a black hole is provided precisely from the radiation made of the same fabric
as black holes: spacetime dynamics.

Black holes as basic objects in General Relativity

Black holes are not only relevant because of the role in some of the most violent events in the
Universe in astrophysical and cosmological scenarios. They are objects of enormous theoretical
interest on their own: on the one hand they represent particularly simple and clean probes into
the strong-field regime of general relativity, and on the other hand they stand as a cornerstone
piece in the puzzle of bringing together physics at different level of description, namely gravity,
quantum mechanics and thermodynamics.

We simply list here some of the relevant aspects of black holes at a theoretical level:

o Simple classical objects. Black holes are simple strong gravity solutions in General Rela-
tivity. In fact, due to the “no-hair” theorems, in stationarity they are so simple that they
can be described only and completely by two parameters. This is extraordinarily singular
for a macroscopic object.

o Two-body problem in general relativity. Given that general relativity deals essentially with
extended objects, the resolution of the motion problem is a very complicated problem by
itself, that becomes only more complicate if we add the complexity associated to mat-
ter structure. In this sense, black holes provide a particularly clean “equation of state”
to study in particular the binary problem in general relativity without having to bother
simultaneously with hydrodynamical, rather than gravitational dynamics.

e Probes into general relativity strong-field regime. General relativity is well tested in the
regime of weak gravitational fields, in particular through the dynamics of binary pulsars.
However, the dynamics of the strong field regime and in particular the control and under-
standing of the decay properties of fields propagating in a strongly dynamical spacetime
are poorly understood. Black holes provide a particularly suited probe to study both the
stationary and dynamical aspects of the classical gravitational field.

o Black hole thermodynamics. The application of general relativity to black hole dynamics
leads to a series of laws in perfect analogy with those of thermodynamics. The analogy
reached a sounder physical status after the understanding by Hawking that a black hole
actually radiate energy according to the black body spectrum of an object in thermal equi-
librium, when semiclassical corrections are taking into account. This thermodynamical-like
result stands as a solid prediction of the interplay between gravity and quantum mechanics
and offers a test for any theory attempting to develop a quantum description of gravity.

e Cornerstone at the gravity, quantum mechanics and thermodynamical crossroad. The sta-
tistical mechanics understanding of the entropy of a black hole in terms of the number
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1.4

of states of the underlying system, is one of the most important task in approaches to
quantum gravity. It offers a test, but also insight to develop avenues into the problem of
marrying gravity and quantum mechanics. On the other hand, the evaporation of the black
hole through Hawking radiation raises the issue of the unitarity of the black hole evolution
description, leading to the black hole information loss problem.

Black holes in higher dimensions. Motivated by quantum gravity scenarios involving higher
spacetime dimensions (namely string theory), there is an interest in understanding classical
solutions in higher dimensions presenting an event horizon. First, the uniqueness results as-
sociated with the “no hair” property of black hole is lost, offering a more complex panorama.
Second, so-called micro black holes of up to ~ 1M, appear in speculative theories inspired
in so-called brane worlds. Third, unexpected mathematical properties shared with four-
dimensional black holes are maintained (namely the so-called hidden-symmetries), calling
for a still missing explanation.

Summary of Lecture 1

. Gravitational collapse and mass:

i) Compact stars: radius decreases with mass.
ii) Maximal mass for white dwarfs and neutron stars.

iii) No known mechanism to stop the collapse above ~ 3Mg,.

. Black holes as a dramatic extreme case of light bending:

i) Tension: Special Relativity AND Gravity.
ii) Gravitational Redshift: incompatibility with flat spacetime.

iii) Spacetime curvature: bending of light.

. Standard picture of classical gravitational collapse:

i) Chain of theorems and conjectures.
ii) A conceptual framework for black holes (...and a “Course Program”).

iii) Every point in the framework is challenged.

. Interest in Black Holes:

i) Astrophysical and Cosmological.
ii) Clean probe into the structure of the gravitational theory: General Relativity.

iii) A key to physics unification and to new physics.



22 An invitation to General Relativity and gravitational collapse

Figure 1.7: Star as a equilibrium between gravitational force and expanding pressure.

1.5 The classical standard picture of gravitational collapse: a first
physical overview

1.5.1 Star structure

We start by considering a simplified Newtonian description of stars. The structure of stars is
basically governed by three simple laws, namely hydrostatic equilibrium, energy transport and
energy generation. For a spherical symmetric star (see Fig. 1.5.1):

=
- = (7“) (hydrostatic equilibrium)

o = 47Tr € p(r) (energy conservation)

T
TY = —i=25L(r) (energy transport)

—

where the primary variables of the system M(r), P(r), L(r),T(r):
M (r):

P(r): pressure at radius r
):

(
L(r
(

mass contained from the center » = 0 to the shell of radius r

energy flow through the sphere of radius r

T(r): temperature at radius r.

In order to close the system we need:
e Equation of state: P = P(p,T, X;), or inverting p = p(P, T, X;)
e Coefficient of conductivity: A = A(p, T, X;)

e Energy production rate: € = €(p, T, X;)
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with X; accounting for the chemical composition. In addition we need boundary conditions.
This would parametrize the stars in terms of its radius. However, the radius is a bad parameter
since it is difficult to determine either experimentally or a priori. A better choice is to choose
the mass of the star. For this we rewrite (1.54), with the mass contained inside a given shell as
parameter:

dr(M) 1

aM T Amr2p(M)
6”25\24) = - ﬁﬁ (hydrostatic equilibrium)
dZ(AAf) = € (energy conservation)
dﬂ%’ = _WL(M) (energy transport)

Appropriate (approximate) boundary conditions are:
T(O) =0 s L(O) =0 s P(Mstar) =0 , T(Mstar) =0

where Mg, is the total mass of the star, which becomes a parameter in the model.

The crucial ingredients to counteract the gravity and keep hydrostatic equilibrium are the
energy production rate and the equation of state. In gravitational collapse, part of the initial
gravitational energy is used to heat the matter. However, the resulting increase in the pressure is
not enough to reach the hydrostatic equilibrium. When the temperature is high enough nuclear
reactions are initiated and the resulting € is able to keep the equilibrium and the life of star is
span. However, once this nuclear fuel is exhausted, the hydrostatic equilibrium is once more
lost and collapse continues. The collapse continues until matter reaches an stage in which the
equation of state is rigid enough. This leads to the formation of compact stars.

1.5.2 Compact stars

Degenerate Fermi gas. Fermions satisfy Pauli’s exclusion principle, that prevents two fermionic
particles to be in the same quantum state. Electrons, protons and neutrons are fermionic par-
ticle of spin 1/2. This in particular means that for a given momentum p there can only be
two particles (spin-up and spin-down). As a consequence, particles occupy the phase space till
a maximum Fermi momentum pr. As a consequence of this motion, the resulting degenerate
Fermi gas acquires a pressure. It is this pressure that balances the gravitational force.

In our context the relevant particles are electrons and neutrons since, at sufficiently high
densities, protons and electrons suffer a weak force process (a form of beta-decay) known as
neutronization:

e”+pt—=n+r (1.54)

The equation of state of a degenerate Fermi gas has two different regimes: i) non-relativistic
regime, when the reached Fermi momentum satisfy pp < mc and ii) the ultra-relativistic regime,
when pr > mec. The equations of state differ in both cases, although they share the key feature
of not depending on the temperature. We have (see e.g. [1])

it —_— _ B2 (N\S
relativistic Fermi gas: P = KR(V)Z (155)
ultra-relativistic Fermi gas: P = K’hc(%)i

where NN is the total number of fermions and K and K’ are dimensionless constants.
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Degenerate stars. Estimating the density as p ~ M/R3 and the pressure gradient as VP ~

P/R we can write the hydrostatic equilibrium equation as G}{gf’ ~ VP

GM? ~ PR* (1.56)

We also introduce the mass per Fermi particle m’ = M/N. Then, we can write:

e Non-relativistic regime: From Eq. (1.55)

P i (N : NG 1.57
V) (157)
so that from (1.56) we have
h? N3
GM? ~ — 1.58
— R (1.58)
and using m/
h? 1
R (1.59)

™ Grmm™73 M1/
From this we conclude that the larger the mass, the smaller the radius. This is the cru-
cial ingredient of the Fermi degenerate equation of state. It implies that as we consider
increasing masses the density and pressure also grow until we reach a (ultra-)relativistic
regime for the Fermi gas.

o Ultra-relativistic regime: Repeating the steps:

4 4
P~ he (g)g th.% (1.60)
and
GM? ~ hc- N3 (1.61)
Remarkably, the radius disappears from the equilibrium relation, so that the mass is fixed
M ~ M, = W (1.62)

The conclusion is that for masses below M,, the pressure associated with the degenerate Fermi
gas supports the gravitational force. As the mass increases the radius decreases and the fermions
become more and more relativistic. Then the ultra-relativistic regime provides the critical mass
mass that can be supported by this mechanism.

White dwarfs are compact stars in which the degenerate Fermi gas is composed of electrons.
In this case, the limit to the mass is known as the Chandrasekhar limit and is about 1.44 M.
For neutron stars, resulting from supernova core-collapses of massive stars, the limit is referred
to as Tolman-Oppenheimer-Volkoff and is less precisely established, depending essentially on the
details of the equation of state. A particular (exotic) class of neutron star are quark stars in which
the relevant degenerate fermions are strange stars (postulated as the ground state of baryonic
matter).

Beyond this mass, no mechanism is known capable of stopping the gravitational collapse.
The eventual result of this process is what we know as black hole. Black holes are a dramatic
extreme case of a characteristic feature of General Relativity: bending of light. And the latter is
a manifestation of a more general concept: spacetime curvature. Let us explore how this concept
emerges in the study of gravitation.
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2.1 Events in spacetime: manifolds and coordinates

Notion of manifold to describe events in space and time. Absence of a priori given structures in
General Relativity: all objects are fixed dynamically. Coordinates understood as labels without

intrinsic meaning: need of coordinate independence of physical statements.

2.1.1 The manifold of physical events
Newtonian description.

Let us start by considering the description of a point-like physical process happenning in space
and time in the context of Newtonian physics. A fundamental tenet in the theory is the existence
of a special class of reference frames in which Newton laws apply: these are called inertial frames.
This provides an “a priori” structure in the theory, “rigid” in the sense that does not result from
any dynamical equations. In particular, such frames provide a set of spatial coordinates (x,y, z)
and a time coordinate ¢, permitting to associate a “time label” and a “space label” with any
physical “event” p, say the presence of a particle:

b = (tpwrp)ypazp) (21)



26 Gravity as spacetime curvature I: manifolds, vector fields, spacetime metric

Considering a physical point-like particle to fix ideas, its evolution in time and space is described
by a “trajectory” parametrized by a label A:

PA) = (Ep(A), 2p(A); 4p(A); 2p () (2.2)

In Newtonian physics, t is a universal parameter and it is natural to use A = ¢ so that (z,(t), yp(t), 2p(t))
describe the trajectory. When writing down the dynamical equations, we have the freedom to
choose (z,y,z) up to a Galilean tranformation: translations, rotations and boosts.

t'=t+ty, ¥=7—a, =Rz, 7 =T—0t , R eSO3) (2.3)
Here € can be parametrised, say, by the Euler angles. As an example of a rotation, we make
explicit the rotation of angle ¢ (Euler angle ) around the z axis, mizing the x and y coordinates
cosp —singp 0
R(p,0,0) = | sinp cosp 0 (2.4)
0 1

On the other hand, coordinates (z,y,z) have a geometric content as associated with inertial
frames. In particular rotations preserves the Euclidean metric in R?: namely the symmetric,
definite-positive, non-degenerated quadratic form § = diag(1,1,1)

ROR'=6 < RR' =1, (2.5)

forming the SO(3) when we require orientation preservation.

Special relativity.

The same reasoning essentially applies to special relativity. Although time is no longer absolute,
the notion of inertial frame exists, providing an a priori structure for the description of physical
events. The freedom in the choice of x = (ct, x,y, z) is up to a Poincaré transformation (namely
affine transformations preserving the symmetric, non-degenerated, signature (1,3), quadratic
form n = diag(—1,1,1,1)), where time and spatial coordinates are “mixed”

xX'=a+A-x . (2.6)

In particular linear transformations associated with matrices A preserve the Minkowski metric
diag(—1,1,1,1) in R*

AnAt =n, (2.7)

spanning the Lorentz group SO(1, 3). We make explicit the form of a boost along the = direction
with velocity v

ct’ ol %y 0 0 ct
z — 2y v 0 0 T
o c
= (2.8)
Y 0 0 1 0 Y
2! 0 0 0 1 z
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1
with v = —— (the so-called Lorentz factor, needed to guarantee the unity of the squared

1—(v/c)
determinant of A, following from the preservation of the Lorentz metric). Noting 72— (v/c)?v? =
1, we can write the boost matrix as

cosh o —sinh a 0 0
—sinh« cosh a 0 0
(2.9)
0 0 1 0
0 0 0 1
where tanh o = —v/c. Note that, as the rotation R in (2.4) mixed coordinates = a y, the boost

trasnformation in (2.9) acts as a kind of rotation in the (¢,x) subspace. In sum, also in special
relativity a geometric meaning is associated with the coordinate structure of inertial frames.

General Relativity.

A basic tenet in the general relativistic description is that all structures in the theory must be
determined dynamically, through the resolution of the appropriate equations. In particular, this
means that the a priori notion of (global) inertial reference frame is absent. Still, in order to have
an analytical description, we need to associate to a physical event p some “labels” (¢, z,y, z), as in
(2.1). However, now the “coordinates” (¢, z,y, z) are completely devoid of geometric or physical
meaning. They are simply labels without intrinsic meaning and the dynamical description should
be independent of them.

Physical statements must be also independent of the choice of coordinates. As an example,
the coordinate description of an object trajectory has no intrinsic physical meaning. Different
descriptions are possible, none of them being privileged. Physical statements become relational
statements. For instance, the notion of “position” of a particle has no intrinsic meaning by
itself, but the “crossing” of two particles does. That is, the meeting of two objects along their
dynamical evolutions has an intrinsic physical meaning: the fact that the two trajectories cross is
independent of their coordinate description (cf. Fig. 2.1.1). Such “meeting” provides an example
of a spacetime “event”, that we model as a “point” in an appropriate space.

Spacetime manifold.

Spacetime is the ensemble M of all physical(/geometric) intrinsic events. As such, M is an
abstract space. We require some structure on this space, in particular an appropriate topology
providing with some basic notions of continuity that we would like to promote to our modelling
of this set of physical “events” !.

n particular, in our modelling of spacetime events we would like to be able to tell events apart, namely to
be able to refer to different event as “separate” points, in such a way that for any two points in M there should
exist respective neighbourhoods of each of them which are disjoint. This is captured by the notion of “Hausdorft”
space (also “separated” or T space). A second (technical) requirement to promote “local proofs” to a global stage
is that there should be exist a countable collection U of open sets, such that any open set in the topology can be
written as the union of a family of open sets in &/. This chracterizes M as a “second-countable” space. As referred
above, this is a technical requirement that is key to use tools such the “partition of unity” to “glue” local results
into global proofs. The most important requirement is however that the space M should be locally homeomorphic
to R™, for some n < co. We refer to [6] for an appropriate presentation of these topological notions in the present
context.
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Figure 2.1: Two “observers” v; and s travelling along their respective trajectories meet at points
p1 and ps. These two points constitute intrinsic “spacetime events”, that can be represented with
different sets of coordinate labels.

The most important of these requirements is that we require that spacetime events can be
locally parametrized by formal time and space labels (the sense in which they refer to “time”
and “space” notions will be discussed later, once the notion of metric is introduced). That is,
independently of its global structure, M should locally look as R™: we require that M can be
locally patched to open sets in R%.

More specifically, this leads to the notion of local chart, that is simply a way of parametrizing
an open set U C M by an open set U c R™

o:UcM — UCR®
p — zt=(2" ... 2" (2.10)

We require that ¢ is an homeomorphism (continuous with continuous inverse), so that at the local
level the topology of M is that of R”. We do not have “access” directly to p, but to its coordinate
representation z# = (z°,...,2"7!). The coordinate representation has no physical/geometrical

content, and different labelings are possible:

g01:U1CM — UleR” , (pQ:UQCM — UQER” (211)
p (xo,...,:tn_l) ) p (yo,...,y”_l)
so that
gpgogol_l :gOl(UlﬁUg) CUl CR*" — (pz(UlﬂUQ) C UQ eR"”
(2%, 2" = Y.,y (2.12)

is an homeomorphism between open sets” in R”. In simple terms this represents a change of
coordinates in the local description of M in U; N Us:

i

o= .., ie{l,... ,n—1}. (2.13)

The spacetime st M is covered by a collection of charts (U;, ;) and their transition functions
Yij = @ © gpi_l. Such complete collection of charts is called an atlas of M. This confers M

*Note that the domain and codomain of the “change of coordinates” 2 o ;! is actually determined by the
restriction in which both coordinate charts are valid, that explaining the given expression.
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Figure 2.2: Two “local charts” (U1, ¢1 : Uy — Ul) and (U, p2 : Us — Ug) covering the crossing
of the two trajectories v; and 7. They provide two local representations of the same underlying
geometric objects. We access points in Uy and Uy, never in M. The key element for the re-
construction of M from charts are the set of “transition functions” ¢;; = ¢; o %—1.

with the structure of a (topological) manifold. To further qualify the manifold M, we need to
impose further structure. The specific type of manifold we work with depends on the properties
we enforce on the transtion functions ¢;;. Here, we will require functions ¢;; = ¢; o (pl._l to
be C> diffeomorphisms between charts U; and Uj. In other words, we are going to work with
infinite-differentiable changes of coordinates. This is a practical choice, but nothing guarantees
that it encodes the actual regularity of spacetime: this is not jst an academical issue, it actually
determines what we can prove and what we can, as we will see when discussing black hole

uniqueness theorems 3.

2.2 Vectors and one-forms at a point. Tangent and cotangen
spaces

Vectors on a manifold: tangent space. Vectors as derivations. Contravariant and covariant tensors.
Tensors as local (point-like) objects on the manifold. Passive and active views of coordinates
changes (diffeomorphisms): push-forward and pull-back transformations. Lie derivative as tensor

variation along an infinitesimal diffeomorphism.

2.2.1 Linear approximation of the spacetime: tangent plane

We need more structure in order to manipulate efficiently the geometrical /physical objects. In
particular, we aim at introducing the structure needed to translate the objects from calculus.
This leads us to consider the approximation of the manifold M by linear structures.
figure derivative
This is in the very same spirit of approximating a non-linear differentiable function f: R —
R,z — f(x) at a point x by its derivative
df

fle+h)= f(z)+ h%(z) +o(h) , (2.14)

3 A challenging question in this setting is: what s the actual (fundamental or effective) “regularity” of spacetime?
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or, more generally, a non-linear differentiable application between open sets of two linear spaces
f:U CR"— V C R™ by its differential at x (actually characterized as its best linear
approximation at that point z)

Fx+h)=f(x)+df(z)-h+o(h) , heR". (2.15)

In this sense, we want to be able to approximate M “close” to a given point p by a tangent plane
T,M. This tangent plane provides a linear approximation to M.

2.2.2 Vectors as curve derivatives.

A first way to look at the construction of such linear space T,,M, is to consider vectors in T, M
as derivatives (“velocities”) of curves passing through p,i.e. v: I C R — M, with v(0) =p € M.
Considering a coordinate description® of  in coordinates {z#} associated with a chart (1, U),
we can write

(plo’y:ICR — Ulzwl(Ul)ERn
A= ) = (00,2 ) . (2.16)

Note that @1 o v is an application from I € R to an open set of R". We demand such an
application to be differentiable at A = 0 (that is, “at” the point p € M). We introduce the
components of a vector v in T, M, in a basis associated with the local chart {z#}, as

da®
dx
dzt
ot = = : (2.17)
dX\ |\_o .
dA A=0

More precisely, this is the vector in R™ obtained from the application of the differential d(p; o
v)(A), evaluated at A = 0, to the vector 1 € R: v = d(p1 07)(0) - 1. The linear structure
in R™ permits to construct curves passing through ¢i(p) € Uy, whose tangent vectors can be
additioned and can be multiplied by scalars (this corresponds to the reparametrization of the
curve ). Such curves can be transported to U C M through the homeomorphism cpl_l so that
addition and multiplication by scalars can be associated with the coordinate representation of
derivatives of curves in M.

In order to make this construction independent of the choice of coordinates, we consider the
representation of the derivative of v at p in another local chart, say

(pQO’y:ICR — UQZ@Q(UQ} eR"”
A gt ) =N,y T O) (2.18)
To ensure the compatibility of linear structures induced on derivatives of « at p from both

coordinate representations, we impose (g o (pl_l and its inverse @1 0 ¢y ! to be differentiable,
namely (1 0 @5 ! to be a diffeomorphism. In simple terms, the coordinate change (2.13) and

4An intrinsic definition of a vector at a point p, not referring to particular coordinates, can be done in terms
of classes of equivalence of curves passing through that point p and having the same velocity at it.



2.2 Vectors and one-forms at a point. Tangent and cotangen spaces

31

its inverse must be differentiable. Indeed, rewriting the same curve v in the coordinates {y*}
associated to the chart (p2,Us), and using (2.13) we find®, using the chain rule

_ (9"
a=o  \Oz
oyt

where the Jacobian matrix (8:0”) is the matrix representation of the differential d(p9 o gofl)

dy”
d\

dz¥

z(A=0) dA

(2.19)

)
A=0

ayo ayO
Syl 920 o ggn—l
) . .
= : : 2.20
(5%) -1 : . (2.20)
8y"_1 ayn—l
ozY o gl

in the canonical bases in the respective linear spaces R™ corresponding to coordinates {z*} and
{y*}. The linearity of the differential guarantees the compatibility of linear structures induced
from both charts.

A vector v € T, M can then be seen as the quotient of the set of coordinate representations
{vf, vy, ..., v, ...} (in the local charts U; of the atlas such that p € U;) by the equivalence class

provided by (2.19), namely vl ~ v% if there exists a differentiable change of variables y = y(z)

such that
oyt
p_ (29

The linearity of operations on v € T, M defines T,M as a vector space that we refer to as the
tangent space to M at p.

As we see, this construction requires the differentiability of the changes of charts ¢; o <pj_1
between any elements of the atlas U; and U; (if not, we cannot establish an equivalence relation).
This defines a differentiable manifold °.

vy . (2.21)
»1(p)

2.2.3 Vectors as derivations: directional derivatives of a function.

A useful caracterization of the vectors of the tangent space T, M is given by a generalization of
the notion of directional derivative of a function. More specifically, let us consider a function
f:M — R and a vector v € T, M. We would like to give a meaning to the directional derivative
of f at p along the direction v. Let us first consider a curve y(\) in M such that y(0) = p
and dvy/dMo = v. Then, we consider the coordinate representation of a function f: M — R in
coordinates {z*} (in a neighbourhood of p)

f : Ul - R
o = f(af) = f(20,.. 2" . (2.22)
In this local representation we can write the curve as z# = x#(v(\)) = x#(\) (note the slight
dxt
abuse of notation) so that x5 = 2#(p) = 2#(\ = 0) and v* = % . We can then calculate
A=0

5This is the first encounter to the so-called index convention of summation of repeated indices.
5Other conditions on the changes between local charts give rise to other type of manifolds, e.g. analyticity, C*
conditions. For simplicity, we will restrain ourselves to C'*°-differentiable manifolds.



32

Gravity as spacetime curvature I: manifolds, vector fields, spacetime metric

the derivative “at p” of the associated local represention of f o+, that is

d 0 dxt 0 0
a) _ of daty o _OF L e 9 f=o(f). (2.23)
d\|,_, Ozt 2(A=0) X |y_o Ozt . oxt .
where we have denoted the vector v as v = v# 9| Relaxing a bit the notation to emphasize
zh |,

the geometric content”, we can write v = v* ——| | so that v that can be understood as a

p

derivation on functions at point p

of
= —

OxH

v(f) (2.25)

p

This approach to tangent vectors provides a natural notation for the linear basis {ej;} at T, M
associated to {x*}, as derivations along the coordinates z#, namely

0

Ot

e’ (2.26)

p

0
When there is no possible confusion in the coordinate basis, we will denote 9, = e Therefore
a:

we can write the vector v as
v =v"0ulp (2.27)
2.2.4 Dual to the tangent space 7),M: cotangent space 7 M.
The dual space Ty M to T, M is the set of linear applications
w:T,M —R (2.28)

Given that T, M is a linear space of finite dimensions, by duality (namely v(w) = w(v)) vectors
in T, M can be seen as linear applications

v:TiM —»R. (2.29)

Given the (ordered) basis {ej;} in T), M associated with a coordinate system {z*}, we can intro-
duce the dual basis in T; M, {wk'}, that is characterised by

wh(el) =el(wh) =0", . (2.30)

x v

"The notation around Eq. (2.23), taking into account all the composed applications, results a bit cumbersome
and may hidden the actual geometric content. In this geometric spirit, we can abuse the notation and identify
p with either A = 0 or z*(p) = z#(A = 0) through the respective appropriate mappings (namely v and the local
chart {z*}), so that we can write v* = dx* /d)|, and

vt = (U“ 0
» o+

. In the following we will follow the same criterium, unless otherwise specified.
p

dxt

dX

a _ of
d\ » ozt »

_ 9

- u
» ox

> f=o(f), (2.24)

with v = v" 8;;‘
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A geometric understanding of w/ comes naturally in terms of the differential of a function. Let
us consider the differential df at p in the local representation of f, as an application f : Uy C
R™ — R. Because of its linearity, the application df(p) : R" ~ T,M — R is an element in the
dual Ty M. In particular df (p) takes (linearly) vectors v in T),M to vectors (values) in R so that,
in the chosen local coordinates

of

) () = | v = L

a oxH

=v(f), (2.31)

p

p

where the first step is just the matricial expression of the action of the differential and in the last
step we have used (2.25). In particular, by duality df (p)(v) = v(df (p)), we have the identities

v(df (p)) = df (p)(v) = v(f) . (2.32)

If we consider now as f the functions z* : Uy — R provided by a local chart, we can evaluate
the action of their differentials dz*(p) at p on the elements in the coordinate vector basis {e}

)_ d
» ox?

From the characterization (2.30) of the dual basis {w}} we conclude

Ao (p)(ey) = do(p) ( -

(z) = o1, (2.33)

wh = dat(p) = dat|p , (2.34)

so that the differentials of the coordinate functions at p provide a basis for T; M, dual to the one
in (2.34) for T,M, given in terms of the partial derivatives. Finally, we can express the linear
form df (p) € Ty M in this basis {w/}, by calculating its components as

0 0
p P
so that we can write
0
Fp)= 5 iy, (2.36)

that gives a geometric view on the differential of a function f at a point p.

2.3 Vector fields and differential one-forms

Hitherto we have considered vectors tangent to M at a given point p € M, namely in the tangent
space T, M. We are going to consider now the smooth assignment of a vector v, to each point
at p € M. This is the idea of a smooth vector field on M, as a “smooth” mapping

vipeM — wv,eT,M (2.37)
In the same spirit, a smooth 1—form on M is a “smooth” mapping

a:peM — a,eTy M. (2.38)
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Let us denote the ensemble of vector fields on M as 7 M and the ensemble of 1-forms as 7*M.
Then, we can see a vector field as a C°°(M)-linear application

v:T"M — C(M)
a — vla), (2.39)
that is smooth in the sense that v(a) is a C°°(M) real function of M
va): M — R
p = vp(oy) . (2.40)
That is®
v(fa+gB) = fv(a) +gv(B) ,Vf,g€ C®(M), YVa,B€T"M (2.41)

and v(a),v(B) € C°(M). In analogous manner, a 1-form can be seen as a smooth C*°(M)-
linear mapping

a:TM — C*®(M)
v — av). (2.42)

Given a local chart with coordinates {z*}, the bases (2.26) and (2.34) or T, M and T,y M extend
to the bases of TM and T*M (as C*°-modules)

e, =0, , w'=dz". (2.43)

2.3.1 Vector fields as function derivations.

We provide an altenative characterization of vector fields and make contact again with the original
introduction of a vector at a point p as a derivation of a function f at p. Letting p move in M
and assigning vectors smoothly as p changes characterizes also a vector field. Namely, from the
identities in (2.32), we can alternatively formulate smooth vector fields as derivations on smooth
C° (M) functions, by permitting the p to vary in M.

This is formalized in the notion of “derivation on C°°(M)”, namely an application

v:C%(M)— C>*(M) (2.44)
that:
i) It is R-linear.
ii) It satisfies the Leibniz rule: v(fg) = v(f)g + fv(g).

Given (2.32), the ensemble of “derivations on C°°(M)”, denoted by X(M), coincides with
T M. Defining the commutator:

[v, w](f) = v(w(f)) —w(v(f)) , VfeCZ(M), (2.45)

[-, -] satisfies:

8This C(M)-linearity is inherited from the definition (2.40) and the R-linearity of vectors acting on 1-forms
at p. By duality, the space TM is C°°(M)-linear, but note that this does not define a vector space, but rather a
C*°°(M)-module, since C*°(M) is a ring, but not a field (as R).
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i) R-bilinearity.
ii) Skew-symmetry.
iii) Jacobi identity.
This confers X(M) with the structure of an (infinite-dimensional) Lie algebra.

As indicated above, the equivalence between a vector field v seen as a C'°°-linear application
on 1-forms and as a R-linear derivation on C'* functions follows from the upgadre of Eq. (2.32)
to the field level, namely

v(df) = df(v) = o(f) - (2.46)

2.3.2 Vector fields as dynamical systems: integral curves and vector flows

A vector field v assigns smoothly a vector v, to each point of the manifold. We can consider a
curve v : I — M such that its velocity, that is it tangent vector v® = dvy®d\, coincides at each
point p = () of the curve with the vector v, of v at that point. Such a curve, tangent to v is
called an integral curve of the vector field.

If we consider a coordinate chart, U, {z%}, so that the vector field is written as X = X“0,,
the curve «y with local parametrization () is an integral curve of x if it satisfies

dz®
d\

= X% . (2.47)

This defines in the open set U C R™ a system of ordinary differential equations, that is, a
dynamical systems. Vector fields are therefore dynamical systems on manifolds.

We assume that the solution (2.47) can be extended to the whole manifold M. This provides
with the following mapping

F:ITCRxM — M
(A z) — Fy(z) (2.48)

such that 4, (A\) := F\(xo) is an integral curve starting at zg, that is 7., (0) := Fy(xo) = xo.
The one-parametic flow mapping F' can be seen from two perspectives:

i) Fixing x¢ it provides the integral curve to X starting at xg.

ii) Fixing X it sends points z € M to points F)(z). Since the vector field assigns a unique
vector at each point, Fy provides a (local) diffeomorphism (as long as it does not vanish,
where critical point of the dynamical system occur).

In the sense ii), vector fields v can be seen as infinitesimal diffeomorphisms. Together with the
derivation commutator (2.45), this constitutes the Lie algebra of local diffeomorphisms.

The one-parametric flow F) in (2.48) will play a key role later when introducing the notion
of Lie derivative. Although it would natural, from a structural mathematical perspective to
introduce such a notion here, we will introduce when discussing the symmetries of a spacetime.
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2.4 The metric tensor. Metric type of vectors.

The spacetime is more than the collection of occurring physical “events”. It encodes fundamen-
tally the notions of standard “clocks” and “rules”. The latter entail the notion of “distance”,
either in “time” or in “space” and are therefore metric notions. The spacetime must be therefore
endowed, at each point, with a structure capable of determining which are the spacelike direc-
tions, the timelike directions and the directions followed by light rays, as well as spatial and time
distances between events.

Following the model of special relativity, this is accomplished by introducing an additional
structure to the differentiable manifold M, namely a (non-degenerate) Lorentzian metric tensor
g. A spacetime is then given by the couple (M, g).

2.4.1 Metric “tensor”

In the next chapter we will discuss systematically the general notion of a tensor. At this stage,
we just introduce a geometric object that, at each point p € M, provides a quadratic form g,
on T, M in such a way that this assigment is smooth. Following the model of vector fields and
one-forms, we upgrade the R-bilinear T),M form to a C°°-bilinear form on 7M. That is, we
introduce a mapping

g:TMxTM — C®(M)
(v,w) — g(v,w). (2.49)

C®°-bilinear in both entries. In the next chapter we will refer to g as 2-times covariant tensor.
In order g to represent a metric field, we require

i) It is symmetric: g(v,w) = g(w,v), Vv, w € TM.
ii) It is non-degenerate: if v is such that g(v,v) = 0, Yw, then v = 0.

Given two one-forms «, 5 € T*M, characterized as C°°(M) linear mappings o, : TM — R,
we can introduce the tensor product a ® 8 (to be generalized in next chapter to general tensors)
as

a@B:TMXTM — C®(M) (2.50)
such that
a® Bv,w) =a)B(w) , Yo,weTM, (2.51)

the C°°(M)-linearity of o and S guarantees the C°°(M)-bilinearity of o ® 5. Moreover, given
a basis {w?} of T*M, a basis of C°°(M)-bilinear mappings (2.49) is provided by the tensor
products {w® ® w’}. In particular, choosing a chart (U, {z} we have seen that the set of forms
{w® = dz®} provide a basis for one-forms. Therfore, in this local chart, the metric g can be
written as

g = gapda® © da’ (2.52)
for C'*° functions g,p. In this chart, the metric conditions above translate in:

i) The matrix gqp is symmetric: gap = Gpa-

ii) The matrix g4 is non-degenerate. In particular, det(gq) # 0 and, at each point, the inverse
matrix (gqp) " exists. We shall denote that inverse as g%, so

9 ghe = garg™ = 6% . (2.53)
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Raising and lowering of indices.

The metric g, provides a canonical isomorphism between T'M and T*M, not depending on
coordinates. Indeed, given its non-degenerate character we consider the metric tensor on T * M
whose component expression, denoted as g/ is given by the inverse matrix of g,,,. That is

gupgpu = gl/pgpu = 5“1/ (254)

Then, given a contravariant vector V# and a covariant vector «,,, we construct the associated
covariant and covariant vectors, respectively, as

Vi=guV" , o' =g" (2.55)

This operations are usually referred to as lowering and raising indices.

2.4.2 Lorentzian signature: vector metric types and light cone.
Lorentzian signature

The symmetric tensor g can be diagonalized at each point p € M. In particular, at each T,,M,
a basis of vector can be chosen such that the metric is diagonal with only 1 or 1 in the diagonal
(the non-degeneracy conditions guarantee that there are no zeros in the diagonal). If the metric
can be taken at each point of M to the form

—1
1
9p = _ : (2.56)
1
we say that is of Lorentzian type. We say that it has Lorentzian signature that we write sign(q) =
(-11...1).
Note that there is an equivalent choice as sign(g) = (1—1...—1). Both of them are natural in

different settings, namely the (—11...1) if we want to make contact with the Riemann geometry
of “space-slices” and (—11...1) if one is focusing trajectories of particles (as it is the case usually
in high-energy physics) or in the spinorial approach to General Relativity. Here we will stick to
the (—11...1) convention.

As a non-denerate 2-times covariant tensor, the metric g provides an isomorphism between
TM and T*M. This is referred to as raising and lowering indices in the relativity literature

t£:T°M — TM
a — o (2.57)

such that
glof v)=a), VweTM (2.58)
and

b:TM — T'M
v o= (2.59)
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such that
v'(a) =g(v,w) , Yae T"M (2.60)

In particular, in a coordinate basis it follows

b

v = 09, = v = v.dz® , withv, = gagpt”

= audz® — of = %9, witha® = g®ay, (2.61)

Light cone
The squared-norm of a vector v at a point p € M is given by

v* = g(v,v) = gapv™v” = v vy (2.62)

The Lorentzian nature of g permit to classify the vectors at T,,M in three cathegories:
i) Spacelike vectors: ggpv®v? > 0.
ii) Timelike vectors: ggv®v® < 0.
iii) Lightlike or null vectors: ggv®v® = 0.

Therefore, the Lorentzian structure of the spacetime permits to introduce at each point p the
notion of light cone, as the set of vectors in T, M of zero norm.

Light or null curves move along light cones in trajectories with null derivative vector. Particles
moving at a speed smaller that light velocity lay inside the light cones, with timelike derivatives.
Finally, particle moving faster than light, or simply curves joining points that are simultaneous
in some coordinate system, have spacelike derivatives. Null and timelike curves are referred as
causal.

The light cone separates T, M in three parts: two non-connected interior regions with timelike
vectors, a connected (if dim(M) > 3) exterior region formed by spacelike vectors, and the light
cone itself with null vectors. In particular, at each point p € M one assigns a future and past
character, respectively, to each one of the connected components of the timelike region, as well
as its component of the light cone.

|Figure lightcone]

2.4.3 Some basic causal notions

. The structure given by the emsemble of light cones determines the causal structure of spacetime.
In particular, in this causality context it is natural to require that a global assignment of future
and past can be consistently introduced. If such an assignment is possible, the spacetime (M, g)
is said to be time orientable.

[Non-orientabl spacetime]|

Lemma 1 (Time orientability). If (M,g) is time orientable, then there exists a (global)
smooth nonvanishing timelike vector field t € X(M).
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2.4.4 Measuring proper distances and proper times: element of line.

The light cone structure of the spacetime allows us to structurate the spacetime in spacelike,
timelike and lightlike directions. But the metric has more structure (actually very little more, just
a scale), permitting us to measure distances spacelike curves and time intervals along timelike
curves. This is provided by the notion of element of line associated to the metric in a given
coordinate system, simply a quadratic form on infinitesimal displacements in spacetime:

ds? = g, dat dz" (2.63)

This can be seen as a generalization of Pythagoras theorem for infinitesinal triangles.
If we consider a spacelike curve v(\) parametrized by A in coordinates {z#}, i.e. (z#())), the
evaluation of (2.63) on y(\) gives

dz# dz¥ |

2 _
For a spacelike curves the arc length can be simply written as
dxt dx?
ds = v(Y(A))—— dA 2.

With our convention for the spacetime signature (—1,1,1,1), the element of proper time along
timelike curves is given by —c?dr = ds?, that is

1
dT—\/
c

An observer in General Relativity is provided by a timelike curve v whose 4-velocity u* is
normalized to —1, that is

dxH dx?

(2.66)

2.4.5 Observers.

g dat da”

. . _ dzt
Using (2.66) we can write u# = %~.

2.5 Minkowski spacetime. Rindler coordinates

The first spacetime we have encountered corresponds to the one in special relativity, correspond-
ing to the absence of gravity. Its line element in coordinates corresponding to an inertial frame

ds? = —2dt* + da? + dy? + d2? (2.68)

Note that Poincaré trasnformations (2.6) preserve the form of this line element. They are the
first example of isometries. The Minkowski geometry illustrates some of the points in this lecture.
First, note that parametrizing a timelike curve by A = ct, proper time writes

1di di
T (2.69)

TENIT G @
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and an observer
dr
"= ot 2.70
B (7’7 dt> (2.70)
with y =dt/dr =1/4/1 — Cizdf . dz

2.5.1 Absence of geometric meaning in the coordinates

We have insisted in the absence of a priori geometric meaning in the coordinates in General
Relativity. This is illustrated byy the following example. Consider the metric with line element

1
ds® = —?dﬂ + da® + dy? + d2? (2.71)

for 0 <t < oo, —00 <z <00, —00 <Yy <00, —00 < z < oo. This suggests a metric with a bad
behaviour as one approaches ¢ = 0, possibly indicating some geometric non-trivial behaviour in
its vicinity. However, if we make the transformation of variables

t=Int, 2 =z,y =y, /=2 (2.72)

with —oo <t/ < 00, —00 < 2’ < 00, —00 < ¥ < 00, —00 < 2/ < co. we realize that the metric
can be written as

ds* = —2dt” + da’? + dy? + d2"? (2.73)

where we recognize the familiar Minkowski spactime. We conclude that coordinates (¢, x,y, 2)
are just labels without any intrinsic meaning.

Remarks.

e i) The expression choice of coordinates actually refers to the freedom in choosing the func-
tional form of four of the functions in the set of ten functions g, (z), where {z#} are just
formal labels without meanings.

In general, for a given metric the remaining six functions cannot be freely chosen (the
freedom in coordinate choice is exhausted). In particular the question of under which
conditions a line element can be trasnformed to the form (2.68), implies the resolution
of an overdetermined system of partial differential equations, so that in general has no
solution. Only in special cases satisfying certain integrability conditions the system can
be solved. As we will comment later, this integrability conditions are given in terms of a
tensorial quantity, precisely the curvature tensor. In other words, the gravitational field.

e ii) The singular behaviour in the metric functions can be due to two reasons: a) an actual
singularity in the metric, b) a pathologic behaviour of the coordinates. Deciding with is
the case is not always easy. The Rindler metric provides below a paradigmatic example of
this that illustrates the behaviour that we will find in black holes.
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2.5.2 Rindler spacetime

Let us now consider a more interesting example referred to as Rindler spacetime.
Let us consider the line element in a chart Uy = {¢, 2} that covers the whole spacetime (M, g)

ds* = —2%dt* +da* |, 2 €]0,00[, t €] — 00,00 . (2.74)

As we see, something seems to wrong with metric at x = 0, where the determinant vanishes
and the metric is not invertible. This x = 0 seems as a “border” of spacetime through which we
cannot get. Is this a geometric intrinsic issue or is it an artifact of the coordinate description?

Let us recast this metric in a different form. We are going to look for coordinates adapted to
the geometry of the problem, namely to null directions. For this we consider curves v : I — M
that in the local chart is is written as A\ — (¢(\), z(\). The correspondinf tangent vector

dt dx

a = _, . 2

“ (d)\’ d)\) (2.75)
Enforcing v to be null at every point amounts to impose, usinf the line element (2.74)
dt\?* [ dt\?
a 2

o= _ - R g 2

uu, =0 < x(d)\>+<d)\> 0 (2.76)

That is

(CC;DQ = 12 (j;)Q , (2.77)

from which we can write (assuming, e.g. j—; > 0)

a\® 1

that leads to two solutions

dt 1 t = Inz+u
4 (2.79)
dx x t = —lnz+w

where u and v are integration constants. At this point note that a given point in the chart
U C M can be labelled uniquely both by the coordinates {t,z}, but also by the pair of labels
{u,v}, since the intersection of u = constant; and v = constanty univoquely defined the point.
That is we can introduce another chart Us, {u, v} with coordinate change (“transition functions”
p12 and 21 given by

u = t—Inx t = Yu4w U €] — 00,00
) 25—71, ) Y ] [ (280)
v = t+Inz x = ez v €] — 00, 00]
From this we can write the respectice relation between the coordinate basis for 1-forms
du = dt—3idz t = H(du+dv) (2.81)
dv = dt+ ldz 7 r = %evgu (du — dv) .
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Inserting this into (2.74) we get
ds* = —e" " “dudv , (2.82)

At this point we can consider a second change of variables (that can be actually justified in
geometric terms as looking for an “affibe parameter”, cf. [10]), to a new chart Us, {U, V'}, with
coordinate change

U = —e™ U €] —o00,0[

, (2.83)
V = ¢ V €]0, 00|

(Notice that we could have chosen to place the “minus” sign — differently, see below). Under this
change for coordinates we get

dU = e “du , dV = e"dv (2.84)
so that we finally get
ds? = —e" “dudv = —dUdV , —co<U <0, 0<V < 0. (2.85)

If we look at the metric in this form, we see that there is no problem in the limits U — 0
and V' — 0. Actually we can “extend” the metric to an enlarged range of the variables {U,V'}.
Namely, we can “enlarge” the spacetime M to M, the latter being now covered by a new chart
Uy, {U',V'} with

u = U

/ , —co<U <00 , —oco<V' <oo. (2.86)
Vi =V

At this point, we can introduce a final chart Us, {T, X} determined by the relations

T = $U+V) U =T-X T €] — 00, 00|
, | (2.87)
X = 3(U-V) V = T+X X €] — 00,00]
When writing the (extended) line element in this coordinates we find
ds® = —dT? +dX* |, T €] —o0,00[, t €] — 00,00 . (2.88)

that we recognize as the Minkowski spacetime (M”, eta) in dimension 2.

Rindler spacetime as a subset of Minkowski

The use of primes in (2.86) serves to emphasize that the ranges of the variables have in extended.
Admittedly, such notation is a bit pedantic and we shall omit the primes in the following, just
paying attention to keep track of the appropriate ranges.

Let us map the Rindler spacetime into the Minkowski spacetime. For this, let us explicitly
find the coordinate change between charts Uy, {t, 2} and Us, {T, X }. We write first the coordinate
changes we have introduce above

t = 5(utv) U = —e U = T-X

v—u ? 9023: I 9053: (289)

Pa1 - _
Tz Vo= ¢ V = T+X

QD ol

Tr =
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From this, we first try to express x as a function of (T, X). For this we write

x=(-VU)2 = (X2-T?):2 (2.90)
Analogously, using u = —In(—U) and v = In V', we can write
1 1 Vv 1 X+T
1 1+7T/X (T
= —In|-——= ] =tanh = 2.91
() = () )
From this, we can conclude
t = tanh ™! (L
P51 : (X2 (2.92)
r = (X2-T?):

To construct the inverse change, we just notice

?=X-T? —= 1= (X)2— <T)2 : (2.93)

from which we can write, for some o € R

X T
— =cosha , — =sinha, (2.94)
x x
from which
T T
tanh o = xea= tanh ™! <X> , (2.95)

and from (2.91) we conclude a = t. Putting together the coordinate changes, we can write

t
r = (X?-T?

x cosht
y (p15 . 5 (296)
T = xsinht

P51 -

I
+
&
=}
=
—
—
=13
Nl= ~—
S

I

so we see that the change (t,z) — (T, X) is just a change into “hyperboloidal polar” coordinates
in which the role of the “radius” is played by the position x and the “angle” is the time label
“t”. Intuition in the geometry of the problem is gained by comparing how the coordinate lines
z = constant and ¢ = constant.

Make Figure

Interpreting Rindler spacetime

More geometric intuition, and as a first practice in manipulated vector fields, is git from the
coordinate vector fields in each chart.

We focus here on d;. Note first that no coordinate function of g depends on x so, in the sense
that 0:gqp = 0, this vector field leaves the metric invariant and we refer to it as an infitemisal
isometry. We will formalise this notion later in terms of the notion of Lie derivative.
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Then, let us compare how the coordinate vector fields in the different coordinates relate to
each other. pplying the change rule to the coordiante transformations above, we can write

Oy =0u,+ 0y =-U0y +Voy (2.97)
From here, we finally obtain
Oy =T0x +XOr . (2.98)

This expression is particularly illuminating since, as we will see when introducing infinitesimal
isometries, it corresponds to a infitesimal generator of a “boost” along the X direction. It is
illustrative to solve the associated dynamical system defined as

dz®

=@ (2.99)
that, in (7', X') coordinates write
dr
> - X
dA
dX
— =T 2.1
= , (2:00)
that can be written as a second order differential equation
d*T d>T
o 7 - T = 2.101
2 = 0 0, (2.101)
with solutions
T = Xgcosh A+ Tpsinh A | (2.102)

for constants Xg and Ty, this implying

X = Xgsinh A 4+ Ty cosh A , (2.103)
SO0 we can write
X cosh A sinh A Xo
_ (2.104)
T sinh A cosh A To

corresponding precisely to a boost transformation where A is actually a “celerity” « related to
the boost . This indicates that the trajectories associated with the integral curves of the vector
O, that in (¢, x) just stay at a fix xg, correspond from the Minkowski perspective to trajectories
of increasing velocity, since A grows without bound.

Let us push a bit further the intuition on this accelerated motion and therefore, on the
interpretation of this “spacetime” from a physical perspective. For this we consider the notion of
observer introduced above, adapted to the integral curves of 0;. First of all we notice that t*0;
is indeed timelike (indeed, g(0¢, 0;) = —x < 0) so that we can define an observer associated with
the fixed x = x¢ position

1 1

— 1 14 — 1o — 1 9o = —
Vet Vgl Vag o o0

a

te (2.105)
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Since we can write

d a
w =2 (2.106)
dr
we can write
dt 1 dx
— = — =0 2.107
dr x = dr ’ ( )
so that the solution to the curve along the 0; vector is
1
(t=—7,2=x0) (2.108)
Zo

In particular this means that the o parameter associated with boost velocity v by v = tanh ¢, is
given by o =t = %OT. This gives a loose notion that xio actually provides a notion of acceleration,
and the latter is constant. To be more precise, if we evaluate the relativistic velocity u® in (7, X)
coordinates along a curve (2.108), using (2.96) to get

aTr
u’ = —— =cosh <l>

dr i)
dX
¥ = == —sinh (xlo) , (2.109)

and then we calculate the relativistic acceleration by taking a second derivative a® ¢ along 7, as
a _ du®

a® = <=, we get
du’ 1
o = & = " ginh (—)
dr o o
du® 1
a® = w_ — cosh (l> . (2.110)
dr i) i)

If we compute now the spacetime “norm” we get

gla,a) = gma'd =a"a, = - (xlo sinh (9;0)>2 + (9610 cosh (;o)>2
— (;})2(%8112 <xlo_smh2 (g;)) _ <x10)2>0 -

So we find that a® is a spacelice vector (as it should, since it must be orthogonal to the normalised
relativistic velocity), and its norm is constant (on a given curve!)

1
la] = — (2.112)
Zo

An interpretation of such trajectories is that they correspond to uniformly accelerated observers
in Minkowski, and the “Rindler spacetime” to the description of Minkowski from the perspective
of such obsercers.

Remark 1: Remarks about Rindler spacetime: to further develop

9An important warning: this is an operation we have not yet defined in general, namely the derivative of a
vector. In this particular flat case, and in this coordinates (7', X), this is however a legitimate calculation as we
will see once we will introduce connections.
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i) Spacetime as seen by an accelerated observer.

ii) Rindler is a wall of light moving to the right, and an observer excaping from it at a constant
acceleration.

ii) One can cover the whole Minkowski with other “Rindler charts”, by adapting appropriately the
signs in the coordinate changes. [Exercise!]

e Resemblance to Schwarzschild, from a metric perspective.

e Interpretation from the “equivalence principle”: on the “constant” gravitational field and Bell’s
acceleration.

e Open project: relate to Unruh effect.

e Notion of horizon: causal disconnection.

2.6 Basic causality notions
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3.1 Tensors

We introduce tensors, namely the tools to write equations that ta well defined point-wise and
expressed in a manner explicitly independent of the chose coordinates: if the equation is valid a
coordinate system is valid in any other. Introduction of derivatives of tensors. Connections and

curvature.

3.1.1 Tensor fields

Taking a step further, we can define the space 7,7 (M) of n-times contravariant and m-covariant
tensor fields as the ensemble of C°°(M)-multilinear smooth applications

T:T*Mx.. " XT*MxTMx...") xTM — C>®(M) . (3.1)

T (M) is also denoted as (). We note that TM = T3 (M) and T*M = TP(M). Using the
notion of tensor product (over the module C*°(M)), we can write 7,7 (M) as

TPM)=TM® .. "TMQTMx..."T*M =TM @ T M (3.2)

This characterization has the advantage of providing directly a local chart basis in 7,7 (M), in
terms of tensor products of the bases in (2.43). In brief, we can write

T =THH2tn Oy @ Oy .. @ Oy, @dat @da™ ... @da"™ |, YT €T (M) . (3.3)

This permits us to write the transformation rule of tensors under a change of coordinates. If we
write in two coordinate systems

o o 4 .
T =T, QAT @ ... dxI™

rovim iy &0 @

Oxin
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and
T = T/il---in . . 0 ® ® diL’,‘jl R ® dl',jm
Jdm g iy " Hylin T ’

then it follows from multilinearity

Phivein _ Ox' Ox'in ozl dxlm T
J1-m — 76.%161 . 8xkn a$/j1 .. ar,jm 1.0y -

Tangent, cotangent and tensor bundle.

An alternative approach to tensor fields is captured in terms of the notion of tangent bundle
over M. In particular, we consider a space formed by each point p € M (M is the base of the
bundle) together with its tangent plane 7, M considered as a fiber. The ensemble formed by all
theses pairs (p, T, M) form an space (actually a manifold) referred to as the tangent bundle TM.
Analogously one introduces the cotangent bundle T* M as the union of all points together with
their cotangent space. That is

™™= |JT,M , T*M= ] ;M. (3.4)
pEM peEM

A bundle P has a natural projection to its base w: P — M, so that every point in the bundle can
be “vertically” projected to a point in M. In this setting, a vector field v is a smooth application
from M to TM that sends (smoothly) each p € M to a point in its fiber (namely 7o v = idyy).
That is

v M — TM (3.5)
p = v, eT,M . (3.6)

Such an application is called a smooth section of the tangent bundle T'M. In particular, the set
of vector fields T M introduced above is the set of sections of the bundle TM. Analogously, a
1-form « is a smooth section in the cotangent bundle T* M

a:M — T*M (3.7)
p = a,eT,M. (3.8)

We can the consider the tensor bundle 77} M as
T"M=TM®.."TMQT*M®...... ™ @ T*M = TM®" @ T* M®™ (3.9)

A n-times contravariant and m-times covariant tensor field is then a smooth section in the tensor
bundle 7' M. The bundle formalism is the natural language to address global topological issues
related to tensor fields. In our present setting we will not resort to its full strength '.

'Still another approach to vector fields, and the 1 — forms and tensor fields by duality and multilinearity,
would be in terms of the notion of derivations of functions C°°(M). Indeed, when looking at a vector v, € T, M
as a derivation on C°°(M), v, defines the R-linear mapping

v, F(M) > R (3.10)

A vector field v provides a smooth rule to vary p on M, in such a way that when acting at each p on functions
in C*°(M) we obtain functions that are also smooth. In other words, a vector field is smooth C°°(M)-linear
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Tensors as point-like and multi-linear objects.

Note that from the very construction tensors are point-like objects. In addition, their multi-linear
character guarantees the following key property: If a tensor vanishes in a certain coordinate
system, it vanishes in all coordinate systems.

Gradients, vectors, directional derivatives.

A generalization of the standard gradient V f of a function is provided by df. Contracting the
gradient with a given vector V#, we construct the directional derivative along V#. The latter
is given above by V(f) = V(df). It is useful to introduce a notation in terms of the “nabla”
operator

Vi = df =0, fda" =V, fda" (3.13)
Vvf = V(df)=V(f) =V ouf)=VIV.f (3.14)

where V, f =0, f.

3.2 [Exercises: tensor manipulation (indices gymnastics).

e Transformation rules of contravariant and covariant vectors under a coordinate transfor-
mation.

e Transformation of the metric tensor.
e Transformation of the volume element.
e Coordinate velocity: Is the coordinate velocity of light constant?

e Conformal structure and light cone structure: conformal transformations of the spacetime
metric.

application
v:C®(M)— C™(M) (3.11)
satisfying in addition the Leibniz-rule
v(fg) =v(f)g+ fvlg) Vf,geCT(M). (3.12)

This defines v as a derivation in C*°(M).
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4.1 Einstein equation

Einstein equation
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5.1 Derivation of Schwarzschild solution. Birkhoff’s theorem

5.1.1 Resolution of Einstein equations: vacuum spherically symmetric case

[To be completed following MTW 32.2.] Result: there exits coordinates, adapted to spher-
ical symmetry, in which the line element of vacuum spherically symmetric spacetime writes

ds® = = f(r)dt? + (£(r)) " dr® + 1% (d6° + sin® 0dg?) . (5.1)
with!
f=fr)= (1 + f) : (5.2)

5.1.2 Fixing the integration constant: Newton’s theory of Gravity again

Let us fix the parameter C in (5.1). This point requires to make contact with Newton’s theory
of gravitation. This can be addressed (at least) in two approaches:

i) Field equations approach: to impose that the solution to linearized Einstein equations
recover the solution to Poisson’s equation for Newton’s gravity.

ii) Particle-motion equation approach: to impose that, at large distaces r — oo, test-particles
follow Keplerian motion dictated by Newton’s Gravitation law.

We follow here the second approach (cf. e.g. [10] for the discussion of linearized gravity). Let us
consider an observer with 4-velocity u® in (5.1). First we write

det ..
ut = ;—T = ({,7,6,¢) . (5.3)

'Note the physical dimensions of C: [C] = Length.
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We fix trajectories to the equatorial plane: 6 = 7, 6 = 0. We impose the arc-length normalization
condition u%u, = —1

. 1
1 apb _ _pi2 | L2 2 20 22
1 = gapuu fto+ fr +7r sml@gp (5.4)
At this point, in order to simplify the discussion and illustrate the usefulne

Lemma 1 (Conserved quantities along geodesics). Given a Killing vector k* and a geodesic
with tangent vector u®, the quantity

k= ku, , (5.5)

15 preserved along geodesics.

dk
Proof. Indeed, we evaluate e along geodesics
T

dk
i UV ok = uVo(kPup) = u(Vaup)u® + kyu®Vaub =0, (5.6)

-
where the first term in the last equality vanishes from the Killing condition, whereas the second
vanishes from the geodesic equation. O

Using lemma 1 for the Killing vectors t* = 0; (stationarity) and ¢* = J,, (rotation around the
z-axis), we can defined the conserved quantities E (energy per mass) and L (angular momentum
per mass)

. . E
E:_kaua:_ft < t:—?
a 2. P L
L =%, =r¢ <+ $=3 (5.7)

Substituing into Eq. (5.4), we get the expression for the (square of the) energy of a timelike orbit

L2
E2zf2+f<1+2> . (5.8)
r
We focus for simplicity on radial geodesics, L = 0, so that
E* =724 f(r) . (5.9)

Deriving this expression along geodesics, and using the constancy of F,

... Jdf =0 . df .. f !
0=2r7"+7r " — 27 + " 0o ; 7 5 (5.10)

On the other hand, we can write (assuming that dt/dr > 0) and using (5.7)

dr  dr dt .dr FE dr
TS ar T dtdr @t Fdt (5:11)

. B2 " rdr\?  1d?
S (HE )

From this we can derive
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In the non-relativistic limit ¢ — oo, and at large distances, one can conclude (cf. Exercise 1)
d*r

RN,
dt?

(5.13)
d?r

C
Using then (5.10), together with f'(r) = —— and Newton’s Universal law of gravitation ol
T

——, one concludes
r
C=-2M. (5.14)
We can therefore write Schwarzschild line element as
oM oM\ !
ds* = — (1 - ) dat* + (1 — > dr? +r? (d6* + sin® 0dp?) . (5.15)
r r

To reintroduce physical dimensions, cf. Exercise 1, one shifts M — Ci—é/[

Exercise 1: Perfoming the shift 7 — c¢7 and ¢t — ct, so that (5.1) writes c?dr? = c2f(r)dt* —
(f(r) " dr? + 12 (d6? + sin® §dyp?), reproduce the steps in the text to get:

;i _ _E
= =
E? s o ,  E% [dr\’
2 = f(r)e” +7° = f(r)e* + 72 \at
/.2
0 = [P+ =i = —f;
PR G B A SR X
oA f 2 \at fde2 ]
In the non-relativistic limit ¢ — oo, % < ¢, conclude from the second equation
E2
whereas from the third and the fourth
LB f¢t By (dr)? (5.17)
f\ctf) a2 2 cAf 2\ dt )
so that when ¢ — oo
1 d?r f'c?
FaE 2 (5.18)
d? GM
Finally, using f ~ 1 at large distances and Newton’s Universal law of gravitation d—t; =2 conclude
from the form of f(r), cf. (5.2)
2GM
C=-=3 (5.19)
Length
The ratio —, of dimensions [Cz] = &, relates distances and masses in the theory through the
c c Mass

compacity parameter Z introduced in (1.52). Its small value associates naturally a compact gravitational

scale — Mto a given mass M.
c
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5.1.3 Birkhoff’s theorem

From the derivation of Schwarzschild’s line element, we can state the following theorem by
Birkhoff (cf. e.g. [5, 2]).

Theorem 1 (Birkhoff’s theorem). The solution to vacuum spherically symmetric Einstein
equations 1s locally isometric to the Schwarzschild solution for o certain parameter M.

The theorem does not tell us how to fix the parameter M, that from the derivation above can
be interpreted as the mass of the compact object responsible of the orbital motion. In this sense,
at a given r around a center of spherical symmetry, M would correspond to the mass contained
inside the sphere of radius M. In this sense, Birkhoff theorem is a relativistic counterpart of the
well-known result in Newtonian’s gravity of the gravitational effect of spherical distributions on
point-like particles, namely:

i) The gravitational force felt by a particle inside a hollow sphere of mass M is exactly zero.

ii) The exterior effect of a spherical distribution of matter of mass M on the particle is exactly
the same as the one created by a point particle of mass M at the center.

1
This is due, in Newtonian gravity, to the exact matching between the — dependence of the
r
gravitational force and the area in dependence as r2.
This theorem can be generalized to the charged case in terms of the Reissner-Nordstrom

solution and to solutions with cosmological constant.

5.1.4 Gravitational redshift

If we look at Schwarzschild line element, we notice that expression becomes singular at » = 0
and r = 2M, in such a way that the expression is only valid in charts with either r €]2M, oo[ or
r €]0,2M|[. At this stage it is not an easy question to answer if such hypersurfaces correspond
to actual singularities of the geometry or to a bad choice of coordinates. Let us focus on the
chart r €]2M, oco[, namely on the exterior of a spherical compact object of radius rmaier and
connecting to infinity. As long as rmatter > 2M, the solution in the interior of the star (not
vacuum) is different from Schwarzschild and problem shows up at » = 2M. But, if for some
reason Tmatter < 2M, then the chart is not covering the whole exterior. Let us focus on this
situation coming from the exterior.

Specifically, at this point we are in conditions of making contact with one of the opening
themes of our approach to gravitation in a relativistic setting, namely gravitational redshift.
Schwarzschild solution allows us to address this issue in a systematic manner. The main two
ingredients are the Schwarzschild line element (5.15) and stationarity. We proceed in two equiv-
alent ways.

Heuristic approach

This approaches stresses the worldlines of two observers. We consider two stationary observers
located at (constant) r = r; and ry (along the same radial direction § = 6, and ¢ = ¢, constants),
with 2M < rqy < ro. In Schwarschild coordinates, the spacetime trajectories of these observers
are, respectively, (t,71,0,, o) and (,72,0,,0,), so it holds (d7? = —ds?)

oM
dr? = (1 - > dt* . (5.20)

r
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Evaluating for each observer, we get the relation between differentials of the proper time d7; as
measured by each observer along its own trajectory (its “proper clock”) and that of coordinate

time dt;.
/ 2M / 2M
dT1 = 1-— 7dt1 s dTQ = 1-— 7dt2 . (521)
1 T2

Now the observer at 71 sends a periodic (radial) light signal to ro during a time lapse, that
measured in its proper time is dr;. These signals are received by observer at ro and (s)he
measures a time lapse dr;.

The key point in the argument is that, due to stationarity (namely no geometric feature
depends on t, since 0, is a Killing vector) all light rays are “parallel” in the (¢,7) diagram. This
translates into the crucial relation

dty = dts (5.22)

so the “coordinate time” lapses, and not the “proper time” lapses, coincide. From this and (5.21)
we get the relation

d d d 120
\/ _2M \/1 _2M dr 1 _ 2M
T1 T2 T1

Using now that the number N of “ticks” (the physical invariant quantity) emitted and received
is the same, with N = v;dr; where v; the frequency of the signal for each observer, we have

m_ dn (5.24)

I/1d7‘1=l/2d7'2 — y _7d7' R
2 1

and using the expression above

vo  [1_2M
2 1-2M
Using r1 < 72 we conclude therefore that 1y > 19, so the frequency is redshifted when light gets
to larger distances.

/1 — 2M
n_yv.__ (5.25)

Geometric rigorous approach

We address now the gravitational redshift discussion in a fully geometric methodology. In this
approach the emphasis is on lightlike geodesics, rather than on observers trajectories, as in the
previous discussion. We start by defining (e.g. [10]) the (angular) frequency w (note the relation
w = 27v with v, the inverse of the period) measured by an observer u®.

Definition 1 (Frequency measured by an observer). Given a null geodesic affinely parametrized

with tangen vector k* (namely k.k® = 0, Vo k® = 0), the frequancy w measured by an observer
u® (i.e. uqu® = —1) is given by

w=—k%%q . (5.26)
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As a motivation for this definition, connecting a wave-like aspect (frequency) with a geometric
optics one (geodescis) let us consider a wave-type equation for a massless field ¢ in Minkowski

—9?

If we consider a mode ¢(t,z) ~ eta?® = ei(wt_Ef), where k% = (w, E), satisfying this equation
(equivalently, taking Fourier transform), we have the dispersion relation

kak® =0 <= —w?+k =0 < w=][k, (5.28)

corresponding to a null geodesic with tangent k*. The frequency observed by an observer sta-
tionary in this reference system u® = (1,0,0,0) is indeed w = —k%u,.

With these elements, let us consider two stationary observers u{ et ug, at respective locations
r1 and ro, 2M < r.ro collinear with one flow line of the timelike Killing vector t*. By imposing

gapudul = —1, we can then write along the flow line

1
ud = e, 5.29
i /—tat, ; ( )
At this point we consider the sending by observer u; of a light ray towards us. The light ray
follows a geodesic with tangent vector k®. Taking into account lemma 1, and ¢t* being a Killing
vector, we know that the quantity t*k, is constant along the geodesic. That is

(t%aq), = (t"ka)q - (5.30)
Writing, at each location, t® in terms of u® we find
(\/—tbtb u“ka)l - (\/—tbtb uaka>2 . (5.31)

Using now the expression of the frequency in definition 1, we get the relation between frequencies
w1 and wo

(V=) wr = (V=tt)_w (5.32)

in terms of the norm of the Killing. This expression is valid in any coordinate system, in any
stationary spacetime. If we consider a coordinate system in which t* = 9y, then t’t, = g, and

(v _gtt)l wi = (v _gtt)2 w2, “_ W=gu), (5.33)

w2 ( —gtt)1

In the particular case of Schwarzschild we finally get

1— 2M
wi_ V. (5.34)
w2 1— 2M
T1
Introducing the redshift factor
A2 — A A
p=22"00 14 =22 (5.35)
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we find
A 120
lpr="t 22V 1 (5.36)
A2 wi 1 2M

This derivation shows the remarkable geometrization effort needed to transition from the heuristic
motivations in the first chapter into a sound mathematical formalism in which the phenomenon
can be presented as a theorem. Indeed, a neat example illustrating the rationale underlying
mathematical physics.

5.1.5 Causal structure

As we did with the Rindler spacetime, in order to gain an intuition on the causal structure of the
spacetime, we look at the null geodesics, focusing on the radial ones § = 0, and ¢ = ¢,. Setting
to zero the line element along these trajectories we find

T T

0= f(r)dt® + (f(r)) ' dr? = - (1 - 2M) dt? + (1 — 2M>1 dr? (5.37)

so that along these trajectories it is satisfied

(B2

that is
dt . oM\ !
— =4 =+|1-— 5.39
e (= (530
where the “+” signs corresponds to outgoing geodesics and the “—” to ingoing geodesics. Although

we do not need an explicit solution to draw the trajectories, in this cas an explicit expression
can be given, namely

t==+r,+C, (5.40)

with C a constant, and r, the so-called tortoise coordinate, defined as

dr 1 r
- =1 +2M1 (7 - 1) 5.41
a4 s MGy (541)
The resulting causal structure can be see in Fig. 5.1, where outgoing and ingoing light geodesics
are show (in yellow), with the corresponding light cones (in blue).
We can comment on the following features:

i) Note the different behaviour of both charts, with the interchange of “time” direction, along
t for r > 2M and along r forn r < 2M. The orientation of light cones respond to this.

ii) Outgoing light rays asymptote to slope 1 straight lines, i.e. Minkowski light rays, consis-
tently with the recovery of a flat geometry far from the central object. This anticipates
the notion of “null infinity” to be later introduced.
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Figure 5.1: Causal structure of Schwarzschild, diagram in Schwarzschild coordinates.

iii) Light cones start for 7 — oo as Minkowski light cones. As long as r decreases they close
more and more and finally they degenerate at the r = 2M hypersurface closing completely.
Then transition in the r < 2M chart to fully open cones that oriented to the left that close
further and further till they fully close.

iv) Notice that the hypersurface r = 2M is (asymptotically) “tangent” to the light rays, so it is
“light” or null hypersurface, whereas the hypersurface r = 0 is encountered by “advancing”
light cones (a time orientation is assumed here), that is, » = 0 is a spacelike hypersurface:
it is “moment in time”, not a “place”, it happens “in future”, and not “to the left” or “to the
right”.

Fom this picture we get an intuition of some features, but is also clear that something pathological
happens in these chart representations as r — 2M. We comment a bit further.

5.1.6 Some remarks about the hypersurface » = 2M
Null hypersurface: causal horizon

Strictly speaking, the hypersuface r = 2M lays outside of the domain of charts » > 2M or
r < 2M. However it corresponds to the limit r — 2M of a family of hypersurfaces r = ¢
parametrized by the constant ¢, on which the vector field 0; is tangent. To determine the metric
type of such hypersurfaces (namely the type of induced metric from the ambient spacetime
metric), we must detemine the metric type of d; (the other two directions, on the sphere, are
always spacelike). We get

r

90, 0) = gu = — (1 — 2M> : (5.42)

That is, in the chart » > 2M, 9, is timelike, and hypersurfaces r = ¢ are timelike. On the contrary,
for r < 2M 0, is spacelike and hypersurfaces r = ¢ are spacelike. However, in both cases, when
making the limit lim, 25 g(0¢, 9;) = 0, indicating that » = 2M is a null hypersurface.

From the discussion of the Rindler spacetime, we have learned that null hypersurfaces act
as causal horizons, in the sense that if the are traversed in one sense, one cannot turn back and
traverse in the other sense. The hypersurface » = 2M in Schwarzschild behaves much as the
hypersurface x = 0 behaved in Rindler. The “traversability” is however not obvious from Fig.
5.1, due to the closing of null cones: we need to “resolve” such collapse to know if a causal curve
can go through r = 2M. This calls for looking for another representation of this geometry.
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Surface of infinite redshift: geometric (apparent) horizons

Looking at the expression (5.36) for the gravitational redshift, if ro stays constant, the gravi-
tational redshift grows as r; becomes smaller. This is consistent with the fact that light rays
have “to struggle” to get away as they are emitted closer and closer to r = 2M: the “ticks” get
distanced because the light ray is retained. Eventually, in the limit vy — 2M, the gravitational
redshift diverges

lim (1+2)=-"—== (5.43)
r1—2M 1— 2M

Light rays cannot escape and the time “to the next tick” becomes infinite. The surface r = 2M
is therefore an “infinite redshift” hypersurface. This concept is related to the geometric notion
of (marginally) trapped surface and apparent horizons, as we shall see later.

Time to get to the surface r=2M: “frozen stars”

In the other ingoing direction if we send a light ray from r, to towards de horizon, we can ask
how long, in coordinate time ¢, it takes for it get to the hypersurface r = 2M. According to
(5.39) and choosing the sign corresponding to ingoing rays, we can write

oM\ !
dt = — <1 - > dr . (5.44)
T
Therefore
v M\ !
At = lim — <1 - ) dr = lim [r—2MIn(r—2M)]
r—2M o r r—2M °
o — 2M
= (ro_r)+2M1n<7;_2M>: . (5.45)

Therefore, it takes an infinite time for the light ray to get to the r = 2M. With hindsight, this
is actually apparent in Fig. 5.1, since ingoing light rays have a vertical asymptote at r = 2M,
this meaning that they cross all ¢ = const lines.

More interesting is the calculation for a radial timelike geodesic.

Exercise 2 (Frozen stars). Consider a massive test particle at rest at r = r,, that stars falling in “free
fall” (geodesic). Taking into account the timelike geodesic equation (5.8):

i) Show that the (Schwarzschild) coordinate time At that takes for the particle to r = 2M is infinite.

ii) Show that the corresponding proper time A7 is finite.

In other words, if an observer very far at large r’s (almost Minkowskian region and therefore
with a proper time that coincides with coordinate ¢) measures the time for the particle to reach
r = 2M it sees that this time is infinite. That is, from his perspective, the particle seems to
slown down as it gets closer and closer to the r = 2M surface. When extended to a collapsing
star, it leads to the notion of a star whose surface seems to settle to r = 2M and stay there: this
leads to the notion of “frozen stars” in the context Openheimer-Snyder.

On the contrary, for the particle falling down, nothing of this kind happens and it gets to
r = 2M at a finite time. Everything seems “as normal”. Whether it can get across such surface
cannot be elucidated in these coordinates.
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5.2 Global structure of the Schwarzschild spacetime

Points discussed about the hypersurfave r = 2M strongly suggests the need to regard the surface
r = 2M in other coordinates. It was not an obvious step at early stages in the development

general relativity to recognized the actual regular geometry nature of the r = 2M hypersur-
face[ref!].

5.2.1 Eddington-Finkelstein coordinates

Exercise 3 (Eddington-Finkelstein coordinates). Given the Schwarzschild metric in standard co-
ordinates (t,r,0, ), consider the change of variables:

t’=t+2M1n(L—1)

2M
r=r
0 =
=

i) Write the line element in the coordinates (t',7’,6’, ¢’).

ii) Consider the radial outgoing and ingoing null trajectories (i.e. 8’ and ¢’ constant). Determine the
ODE:s satisfied by these trajectories and sketch the corresponding outgoing and ingoing curves in
a (t',r’) diagram, in particular showing the null cones.

iii) Determine the coordinate time At’ between the emission of an ingoing radial light ray from an
observer at position ry and its reception at r— (with ry > r_). If r_ = 2M, what can be
concluded about the new coordinate system as compared with the original one?

5.2.2 Maximal extension of Schwarzschild: Kruskal coordinates
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