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Chapter 1

An invitation to General Relativity and

gravitational collapse

Contents
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1.4 Summary of Lecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 The classical standard picture of gravitational collapse: a �rst phys-
ical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1 A �rst glimpse into to Gravity as spacetime curvature

1.1.1 Robust elements in General Relativity

General Relativity explains gravity in terms of curvature of the spacetime. In particular, it
provides a prescription for the determination of such curvature in terms of the presence of mass
and energy in the spacetime, through the so-called Einstein equations.

Beyond the speci�c details of the theory, we can point out several conceptual elements that
the theory teaches us and that should survive in any theory extending or substituting General
Relativity. Among these elements we make explicit the following ones:

i) Gravitational redshift: light propagating through a gravitational �eld experiences a dis-
placement in its frequency, in particular shifting to longer wavelengths when passing from
stronger to weaker gravitational �elds (an inverse �blue-shift� e�ect happens when propa-
gating towards strong gravitational �elds). Such an e�ect should survive General Relativity
since it does not depend on the detailed form of the �eld equations.

ii) Gravitational waves: the theory presents local dynamical degrees of freedom (for spacetime
dimensions ≥ 4) associated with the gravitational �eld, which are absent in the previous
non-relativistic (Newtonian) theory. Such degrees degrees of freedom can be interpreted in
terms of dynamical tidal �elds. In this sense, the understanding of gravity in terms of the
tidal deformation of objects acquires a key role in the very development of the theory.
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iii) Frame dragging: a rotating objects �pulls� the spacetime with it, making all nearby objects
experience a �force� entailing them to rotate. Again, this is independent of the detailed
form of the �eld equations, and refers essentially to some kind of behaviour of spacetime
as an elastic medium that cannot be detached from the material sources creating it.

All these three e�ects can be referred as kinematical in the sense that qualitatively they are
independent of the particular form of the �eld equations for the gravitational �eld and mainly
rely on the structural fact of constructing the theory on a curved spacetime Lorentzian manifold1.

Special relativity o�ers a description of relativistic motion in the case that gravity can be
neglected. In this section we describe the tension existing between special relativity and the
incorporation of gravity in the picture, ultimately leading to the notion of a curved spacetime:

Special Relativity

Gravity

Tension −→ Spacetime curvature

The main line of reasoning is that the marriage between light propagation and gravity implies
the existence of a gravitational redshift e�ect, and that the latter is incompatible with special
relativity, leading to the notion of an intrinsically curved spacetime:

Gravitational Redshift

Flat spacetime

Tension −→ Spacetime curvature

We follow essentially the discussion in [5].

1.1.2 Gravitational redshift from energy conservation

Let us start by reviewing the original Einstein argument, based on a physical reasoning (namely
energy conservation), leading to the existence of a gravitational redshift.

We dwell here in a Newtonian description of gravity. Let us consider a particle of mass m at
a height L in a constant gravitational �eld (with g the module of the gravitational acceleration,
so g > 0).

i) Initially the particle is at A and its �rest energy� (special relativity) is:

EA = mc2 . (1.1)

ii) It falls to B, having a �rest� plus �kinetic energy�:

EB = mc2 +mgL . (1.2)

iii) At B, the particle is annihilated producing a photon with (the same) energy:

EBph = mc2 +mgL . (1.3)

Then the photon goes back upwards to A. If the energy of the photon at A were EAph =

EBph = mc2+mgL, then we are able to create energy that we can (immediately) use. Indeed,

1These three elements are captured, in a linearized version, in the so-called �optical� scalars that encode the
�expansion�, �shear� and �twist� response of an extended body to the presence of gravitational �eld, see e.g. [8].
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Figure 1.1: Violation of energy conservation if photons are not gravitationally redshifted.

the photon at A can be transformed into a particle of mass m and some additional energy
(thermal, kinetic...) (see Fig. 1.5.1):

EA = mc2 +mgL . (1.4)

We can repeat the process n times after which we have at A a particle of mass m and a
production of extra energy

EA = mc2 + nmgL , (1.5)

producing an arbitrarily large violation of the energy conservation.

The way out is to accept that the photon loses energy when going from B to A: the photon has
to climb the gravity potential as a massive particle would have to. Therefore starting from B
with an energy EBph it arrives at A with an energy EAph:

EBph = mc2 +mgL = mc2(1 +
gL

c2
) → EAph = mc2 (1.6)

Now Einstein's argument incorporates another piece of physical reasoning. In particular, at this
point one uses the relation between energy of a photon and its wavelength given by quantum
theory, namely

Eph = hν = ~ω . (1.7)

Then, using λ = c/ν and the redshift factor z introduced as

z =
λA − λB
λB

, 1 + z =
λA
λB

, (1.8)

one gets

1 + z =
λA
λB

=
νB
νA

=
hνB
hνA

=
EB
EA

= (1 +
gL

c2
) , (1.9)

and therefore

z =
gL

c2
. (1.10)

This expression for the redshift of a photon �going up� a gravitational �eld, deduced by Einstein in
1911 using this chain of heuristic physical arguments, would be indeed experimentally con�rmed
only in 1959 by Pound & Rebka [9].
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1.1.3 Gravitational redshift and the principle of equivalence

The previous discussion of the gravitational redshift is physically inspiring, but can be criticized
on consistency grounds. The discussion can be recast in a more systematic (��rst-principles�)
form in terms of the key ingredient in the process of the geometrization of the gravitational �eld:
the equivalence principle. In its more basic form it states:

�All e�ects of a uniform gravitational �eld are identical

to the e�ects of a uniform acceleration of the coordinate system.�

This is a generalization of the simple remark in the context of Newtonian particle dynamics,
where we can write (we assume here equality between the inertial and gravitational mass, in
order to simplify the argument)

m
d2x

dt2
= F = −mg ⇐⇒ d2x

dt2
+ g = 0 ;

d2x′

dt2
= 0 , (1.11)

with

x′ = x+
1

2
gt2 . (1.12)

We note that the coordinate system associated to x′ moves with a uniform acceleration a = −g
as described by the coordinate system x. In particular, the coordinate x (in the non-accelerated
system) corresponding to the center of coordinates of the accelerated system, i.e. x′ = 0, is

x = x′ − 1

2
gt2 =

1

2
at2 ; with a = −g . (1.13)

We say that the reference system associated with x′ is in free fall and we see how a local
gravitational force disappears for a free-falling observer. On the other hand, if we take the
perspective of x′ as the fundamental one, then there is no gravitational force and the force that
x experiences is of inertial nature, as a consequence of his (�upwards�) acceleration with a = g
from Eq. (1.12), with respect to x′. This dual vision between inertial and gravitational forces
will be the key to explain test-particle motion in general relativity in terms of geodesics, that
correspond to free falling observers.

Coming back to our discussion on the red-shift, the key element here2 is the extension of the
validity of the equivalence principle statement to ALL possible e�ects, this including electromag-
netic ones, in particular light propagation.

Let us consider again the points A and B above, standing in a constant gravitational �eld.
At a given moment, a photon γ is emitted from A to B. According to the equivalence principle
we can consider an equivalent description from the perspective of a free falling observer (the
system x′ above), from whose perspective there is no gravitational �eld but instead the emitter
A and receiver B su�er an upwards acceleration a = g, as expressed in (1.12). We can think of
the �apparent� gravitational �eld experienced in an accelerated rocket or elevator, in absence of
a gravitational source, cf. Fig.1.1.3

That is, described in the free-falling reference system3 points A and B corresponding to

2 In a manner analogous to the role of the relativity principle that leads to special relativity, where ALL
physical experiments must render the same results for inertial observers.

3Note that, according to the equivalence principle, x′ stands as a perfectly valid inertial observer (she/he is
not accelerated! So, along its free fall, she/he follows a straight line) and simply perceives the emitter A and the
receiver B as accelerating upwards. This perspective is the one that will be taken in general relativity, where the
notion of free fall can be given a primitive meaning. Accordingly, in this (local) inertial system the speed of light
is c.
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Figure 1.2: Photon moving in a constant gravitational �eld or, equivalently, in an accelerated
frame.

emitter and observer move in a uniformly accelerated motion with a = g as (note Eq. (1.12))

x′A = L+
1

2
gt2 ; x′B =

1

2
gt2 (1.14)

i) The photon is sent from A at t = 0, so that B receives it at t = t1. The travelled distance
is4 (light propagates in this �inertial� coordinate system at speed c and all calculations in
such inertial frame are standard, only �changes� to other frames need to be adapted to
special relativistic rules)

x′A(0)− x′B(t1) = ct1 , L− 1

2
gt21 = ct1 . (1.15)

ii) A second photon (or the next crest in a trainwave) of is sent from A at t = ∆τA and B
receives it a time ∆τB after receiving the �rst photon, that is at t2 = t1 + ∆τB. The
distance traveled by the second photon is

x′A(∆τA)− x′B(t2) = c(t2 −∆τA) = c(t1 + ∆τB −∆τA) . (1.16)

The left hand side can be re-expressed as

x′A(∆τA)− x′B(t2) = x′A(∆τA)− x′B(t1 + ∆τB) = L+
1

2
g(∆τA)2 − 1

2
g(t1 + ∆τB)2

= L+
1

2
g(∆τA)2 − 1

2
gt21 − gt1∆τB −

1

2
g∆τ2B = L− 1

2
gt21 − gt1∆τB +O(∆τ2) .(1.17)

Neglecting second-order terms in ∆τ 's, we can write

L− 1

2
gt21 − gt1∆τB ≈ c(t1 + ∆τB −∆τA) . (1.18)

Subtracting (1.15) from (1.18) we get

−gt1∆τB = c(∆τB −∆τA)⇔ ∆τA = ∆τB(1 +
gt1
c

) . (1.19)

Finally, approximating at �rst order from (1.15), t1 ≈ L
c we get

∆τA = ∆τB(1 +
gL

c2
) . (1.20)

4We will neglect second order terms (such as
(
v
c

)2
or
(
gL
c2

)2
) in the following discussion.
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Figure 1.3: Diagram for Schild's argument on the incompatibility between gravitational redshift
and �at spacetime.

iii) Now, expressing the time intervals ∆τ 's in terms of frequencies, ∆τ = 1/ν we write

νB = νA(1 +
gL

c2
) , (1.21)

from where, again

1 + z =
λA
λB

=
νB
νA

= (1 +
gL

c2
) , (1.22)

and

z =
gL

c2
. (1.23)

as in Eq. (5.25).

1.1.4 Gravitational redshift implies curvature of spacetime

The previous discussions have led us to the notion that light propagating in a gravitational �eld
gets redshifted. We can accept this either from Einstein's physical argument, or as a consequence
of the equivalence principle, or simply as an experimental fact from Pound & Rebka experiment.

On the other hand, special relativity has already shown that a consistent description of
particle kinematics and electrodynamics involves a spacetime perspective on space and time.
Space and time are recast in a single geometric structure modeled as a linear space endowed with
a �at metric of Lorentzian type: the Minkowski spacetime. At this point we show, following an
argument of Schild (see Fig. 1.1.4), that the presence of a gravitational redshift is incompatible
with the existence of a �at spacetime like in special relativity. Schild's argument is independent
of the detailed mathematical description of the gravitational �eld. Only stationarity plays a key
role in the argument. Let us consider two observers A and B at rest one with respect to the
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Figure 1.4: Wave train of signals emitted from B towards A.

other and with respect to the Earth (namely, the source of the gravitational �eld). Whatever
the nature of the gravitational �eld is, it will present a stationary con�guration.

At some given time, a signal is emitted from B towards A. Let us assume that it is a periodic
signal with N cycles. Then (see Fig. 1.1.4)

N = νB∆τB , (1.24)

with νB the frequency and ∆τB the elapsed time of the signal.
The receiver at A receives the N cycles in a time ∆τA, so that

N = νA∆τA , (1.25)

and

νA∆τA = νB∆τB . (1.26)

According to previous discussions, if a redshift is present we have νB > νA and, as a consequence

∆τA > ∆τB . (1.27)

However, since the gravitational �eld is static and the observers do not move, trajectories γ1
and γ2 of the respective photons must be congruent curves, i.e. γ1 and γ2 are the sames curves
except from their positions in the space-time picture. If such curves are placed in a �at space
and time diagram (namely, the spacetime), they must form a parallelogram, so that

∆τA = ∆τB , (1.28)

in contradiction with (1.27). This contradiction indicates that the �at spacetime of special
relativity, namely Minkowski spacetime, is not adequate for the description of gravity (if we
want to make it compatible with the existence of gravitational redshift). If we want to stick to
the spacetime vision of space and time provided by special relativity, then we must renounce
to spacetime �atness. In particular, initially parallel light trajectories can start converging and
diverging, in general bending in a curved spacetime. More generally, in this geometric spacetime
perspective the presence of a gravitational �eld is realised through the curvature of spacetime.
General Relativity provides a de�nite self-consistent manner of introducing physical sources to
this spacetime curvature, namely through energy and stress of matter. At the same time, it
endows this spacetime curvature, namely the gravitational �eld, with speci�c dynamics.
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1.1.5 Towards the �xing of curvature: gravitational �eld and tides

As we have just seen, the existence of a gravitational redshift together with the notion of space-
time structure inherent to special relativity, leads to the need of curvature of such spacetime
geometry. But the reasoning gives no clues about the manner of �xing such a curvature. On the
other hand, the equivalence principle amounts to the introduction of in�nitesimal (point-like)
observers that do not experience gravitational forces. Two questions emerge therefore for the
previous analysis:

i) How can be determined the curvature of spacetime?

ii) Is there an alternative way in which a free falling observer can detect the presence of a
gravitational �eld?

Remarkably the notion of tide provides an approach towards both these questions. This leads us
to revisit some features of Newtonian gravity.

Newtonian gravity: particle and �eld equation

Particle dynamical equation. In Newtonian physics, given an inertial reference system,
equations of motion for particles with respect to a universal time t are given by Newton's second
law

mi
d2~x

dt2
= ~F , (1.29)

where mi is the so-called inertial mass and ~F is a given force. Dynamics are complemented by
a speci�c prescription of the force ~F . In the case of the gravitational force ~FG exerted by a
point-like object of (active gravitational) mass M on an object of (passive gravitational) mass
mg, the force ~FG is given by Newton's universal gravitational force

~FG = −GMmg

r2
êr , (1.30)

where r = |~x− ~x′| and êr = ~x−~x′
|~x−~x′|

, where ~x is the position of the mass mg and ~x
′ is the position

of mass M . Combining (1.29) and (1.30) and using (another version of) the weak equivalence

principle, namely mi = mg, we �nd

d2~x

dt2
= −GM

r2
êr . (1.31)

The key point to underline here is that the acceleration of a particle in a gravitational �eld is
completely independent of the nature of that particle, only depending on the mass of the particle
creating the �eld ~EG. It is a geometric feature in the sense that all particles follow the same
trajectories: it is therefore a property of the background geometry. General relativity will take
this to a foundational level: it is in this sense that the theory is fundamentally geometric, and
not in the sense of its capability to be formulated in a covariant way (coordinate independent).
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Field equation. A important conceptual step towards general relativity is the introduction
of the notion of �eld. In particular, the gravitational �eld ~EG created by a particle of mass M
placed at ~x′ on a arbitrary point ~x is given by

~EG = −GM
r2
êr , (1.32)

so that when placing a particle of mass m in this �eld ~EG it experiences a force

~FG = m~EG . (1.33)

The �eld ~EG can be written in terms of a gravitational potential φ as

~EG = −~∇φ , (1.34)

where

φ = −GM
r
. (1.35)

Newton's prescription (1.30) for the gravitational force can be recast in terms of an equation for
φ. For this, consider a continuous distribution of mass with mass density ρ(~x) in a region D.
From (1.32) we can write

~EG(~x) = −G
∫
D
ρ(~x′)

~x− ~x′

|~x− ~x′|3
d3x′ . (1.36)

If we now calculate the divergence ~∇ · ~E, and use

~∇ ·
(

~x− ~x′

|~x− ~x′|3

)
= 4πδ(~x− ~x′) (1.37)

we obtain

~∇ · ~E = −4πGρ(~x) . (1.38)

On the other hand, taking the divergence in (1.34) we obtain ~∇ · ~E = −∆φ. Finally, we can
write

∆φ = 4πG ρ(~x) (1.39)

This is Poisson's equation, that we have obtained from Newton's expression for the gravitational
force. In other direction, if we consider a pointlike source with density ρ(~x) = M δ(~x − ~x′), we
can solve5 Poisson's equation (1.39) to obtain (1.35) and therefore Newton's law (1.30) through
(1.34) and (1.33). In this sense, Newton's force and Poisson's equation are equivalent. At the
Newtonian level we can take the perspective we prefer, at the relativistic level Poisson's expression
will be the natural starting point.

5Use

∆
1

|~x− ~x′| = −4πδ(~x− ~x′) . (1.40)

Note that, consistently with (1.34) and (1.36) we can write

φ(~x) = −G
∫
D

ρ(~x′)

|~x− ~x′|d
3x′ , (1.41)

so that Poisson's equation follows directly from the application of (1.40).
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Tides and free fall. As we have discussed in section 1.1.3, a pointlike observer in free-fall is
not able to tell about the presence of a gravitational �eld: its acceleration vanishes. Generalizing
slightly the discussion above around Eq. (1.12), let us consider a gravitational potential φ = φ(~x)
and a particle whose instantaneous position in an inertial reference system is ~x = ~xo. Noting
from the previous discussion ~a = d2~x

dt2
= −∇φ(~x), we can make the change of coordinates

~x′ = ~x− ~xo −
1

2
~gt2 , (1.42)

with ~g = −∇φ(~xo) (note ~x is evaluated at ~xo at this gradient). Taking second time derivatives
we �nd

~a′ = ~a− ~g = −∇φ(~x) +∇φ(~xo) , (1.43)

which vanishes at xo. So a pointlike particle cannot tell if it is falling, by what she experiences
at that point.

But there is a manner of telling, if one looks to another closely falling observer, separated at
a distance ~̀. Indeed, we can evaluate

~a(~x+ ~̀) = ~a(~x) + ~̀ · ∇~a(~x) + o(~̀) . (1.44)

Neglecting orders higher than the linear one, we �nd that the di�erence δ~a = ~a(~x+ ~̀)− ~a(~x) of
accelerations satisfy (using ~a = ~EG = −∇φ)

δai = `j∇j(EG)i = −`j ∂2φ

∂xj∂xi
= −`iEji , (1.45)

where Eij

Eij =
∂2φ

∂xi∂xj
(1.46)

is the so-called tidal tensor, corresponding indeed to the gradient of the gravitational �eld (tides).
The tidal acceleration δai is non-local, it depends linearly on the separation ~̀ between free-falling
observers, but the tidal tensor �eld is indeed local. We make two remarks:

i) In contrast with the �eld ~Eg, it cannot be eliminated in a point by local coordinate of
transformations: it demonstrates the presence of a gravitational �eld by comparing the
e�ect on nearby free falling objects.

ii) The �eld equation of Newton's theory of gravity, namely Poisson's equation is obtain by
imposing that the trace of the tidal tensor is prescribed by (4πG times) the density of
matter:

∆φ = Tr

(
∂2φ

∂xi∂xj

)
= 4πGρ . (1.47)

General relativity will follow the spirit of these two remarks above:

i) Free-falling particles will follow trajectories of vanishing 4−acceleration. Gravity will mani-
fest by the relative acceleration of these non-accelerated trajectories, geometrically encoded
in the (Riemann) curvature that represents a tidal �eld.
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Figure 1.5: Tidal deformations, modifying the trajectories of particles in free fall.

ii) Einstein equations will follow by prescribing the trace of the tidal (curvature) �eld to be
�xed by the appropriate generalization of the mass density in Newtonian dynamics to the
appropriate notion in special relativity (namely the so-called stress energy tensor).

Example. Consider the gravitational potential created by spherical distribution of mass M in its
exterior

φ = −GM
r
. (1.48)

with r =
√
x2 + y2 + z2. Then, the calculation of the tensor �eld yields

Eij = −GM
r5

(
3xixi − δijr2

)
. (1.49)

In particular, if we consider a test particle at ~x = (0, 0, z) we �nd

E =
GM

r3


1 0 0

0 1 0

0 0 −2

 , (1.50)

so that, writing ~̀= (δx, δy, δz), we �nd

δax = −δxExx = −δxGM
r3

δay = −δyEyy = −δyGM
r3

δaz = −δzEzz = δz
2GM

r3
. (1.51)

As a consequence, a set of free-falling particles are pull apart in the falling direction and are
squeezed in the transversal one. As the tides on Moon and Earth.

1.1.6 What must be retained.

i) Spacetime presents curvature to account for gravity.



16 An invitation to General Relativity and gravitational collapse

ii) Curvature is �xed dynamically, in terms of the presence of mass and energy.

iii) No symmetry imposed to spacetime: absence of (global) inertial frames. Coordinates just
labels for events in spacetime and have no intrinsic physical meaning. Inertial observers

are associated with spacetime trajectories in free fall, that is, not subject to acceleration.

iv) (Weak) Equivalence principle: locally (at each point) we must recover special relativity,
since gravitational forces can be eliminated. Light cones persist, �locally� they are un-
touched, but their relative distribution is distorted by the spacetime curvature:

- Light travels along straight lines along these null cones. It is deviated due to spacetime
curvature.

- Massive particle travel inside the null cones.

- In the absence of forces additional to gravity, particles follow trajectories of vanish-
ing 4−acceleration, this corresponding to geodesics in the spacetime structure and
physicall corresponding to inertial observers in free fall.

- In particular, light cones can be �forced to turn� in the �eld of rotating bodies: frame

dragging.

1.2 Classical collapse: standard relativistic paradigm

As discussed above, a characteristic feature of General Relativity and, more generally of theories
modeled on curved spacetimes, is the bending of light. Black holes constitute a dramatic extreme
in which the light bending is so strong that it cannot leave a certain compact region of the space.

A natural starting point to the study of black holes is to consider the ultimate fate of stars
of su�ciently high mass. This gravitational collapse approach is not the only possible avenue to
the black hole problem, but it has the virtue of providing a general framework that illustrates
some of the main aspects, not only of black hole physics, but also of gravitational physics, this
including in particular General Relativity. Moreover, it also follows the historical route to the
topic.

Let us give a brief overview of the current standard picture of classical gravitational col-
lapse, that constitutes what one might call the establishment picture of gravitational collapse.
This consists in a heuristic chain of theorems and conjectures providing a general conceptual
framework:

i) Singularity theorems (Theorem). If enough energy is placed in a su�ciently compact region,
such that light bending forces the local convergence of all emitted light rays and so-called
�trapped surfaces� are formed, then a singularity develops in spacetime [7, 3, 4, 2].

ii) (Weak) Cosmic Censorship (Conjecture). In order to keep the predictability of the theory,
the formed singularity should be hidden from a distant observer behind a so-called �event
horizon�, giving rise to a black hole region.

iii) Spacetime stability (Conjecture). If general relativity is a physically consistent theory of
gravity, it is natural to expect that a system with a �nite amount of energy must be
eventually driven dynamically to stationarity. This is again a conjecture, now about the
stability of a black hole spacetime.
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Figure 1.6: Establishment picture of gravitational collapse. The picture in the right is a Carter-
Penrose spacetime diagram where lightlike rays lay at ±45o. The thick line at 45o line represents
the event horizon, separating the black hole region to its left (containing the spacetime singularity
corresponding to the horizontal oscillating line) from the rest of the spacetime.

iv) Black hole uniqueness (Theorems). The eventual stationary state is completely charac-
terized by the mass and angular momentum of a the resulting (Kerr) black hole. This is
usually referred to as the no-hair property of stationary black holes.

The establishment picture provides a general systematic framework for posing and addressing
issues related to black hole spacetimes. In particular it provides a working program to the study
of many of the key aspects to General Relativity. On the other hand, it must be said that nearly
every single aspect of it is challenged at one place or another in gravitational physics. In quite
a literal sense, the goal of this course is to explain the diagram in Figure 1.2.

1.3 Interest in Black Hole physics

Why should done study black holes? A straightforward valid astrophysical answer could be,
simply, because they are out there. Although this is indeed a valid answer, this does not make
justice to the richness of the subject. Black holes indeed constitute, on the one hand, crucial
ingredients for the understanding of astrophysical and cosmological processes. But, on the other
hand, they also provide clues for the understanding of fundamental issues in the theory as well
as a cornerstone in modern developments in theoretical physics.

1.3.1 Black holes in astrophysics and Cosmology

Compacity parameter

By now we have a general broad picture of the destiny of star attending to its �nal mass. The
resulting �nal stage is a compact massive object, namely white dwarf stars, neutron stars or black
holes. One might expect that the key parameter controlling the transition from white dwarfs
to black hokes to be the density of the �nal object, but this not quite so. Indeed the (formal)
density of supermassive black hole can be indeed very small. The relevant parameter is the one
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controlling the ability of emitted light rays to escape from the object, and this is controlled by
a dimensionless parameter Ξ referred to as the compacity parameter

Ξ =
GM

c2R
, (1.52)

where M is the mass of the object and R is its characteristic scale (radius). In order to gain a
qualitative intuition of why the radius enters with as R−1, and not as R−3 as it would be the
case for a density, it is enough to consider the Newtonian description of the escape velocity. For
this we consider a particle of mass m emitted with velocity v from the surface of an spherical
object of mass M at radius R. Its total energy is ER = 1

2mv
2 − GMm

R . The escape velocity is
the one that permits the particle to reach an in�nity distance with vanishing velocity, so that
E∞ = 0. Conservation of energy then gives

1

2
mv2 − GMm

R
= 0⇔ 1

2
v2 =

GM

R
. (1.53)

Considering the existence of maximum velocity v = c, for radius R < 2GM
c2

no particle can escape
to in�nity (this argument was presented already by Michell and Laplace). In other words, for a
spherical object if the rate GM

c2R
is larger than 1

2 no light can escape. Remarkably, this estimation
in Newtonian theory results to be exact when revisited in the context of General Relativity, as
we will see in Lecture 5. This justi�es the use of (1.52) as the relevant parameter in this context.
We provide

Object M (M�) R (km) Density (kg/m3) Ξ

Earth 3× 10−6 6× 103 5× 103 10−10

Sun 1 7× 105 103 10−6

White Dwarf ∼ 0.1− 1.4 ∼ 104 1010 10−4 − 10−3

Neutron Star ∼ 1− 3 ∼ 10 1018 0.2

Stellar Black Hole (spherical) >∼ 3 9(M = 3M�) - 0.5

Stellar Black Hole (extremal) >∼ 3 4.5(M = 3M�) - 1

Massive Black Hole ∼ 109 20U.A. - 0.5− 1

Types of black holes

Attending to their mass we can classify black holes in di�erent types:

i) Stellar mass black holes: M ∼ 3− 30M�.

These black holes are predicted by the gravitational collapse description discussed above,
starting from highly massive stars. In this sense, they were predicted by the theory.

ii) Massive and supermassive black holes: M ∼ 105 − 109M�.

Black hole of these masses came as a surprise from the need to explain the sources of energy
associated with quasars (quasi-stellar objects). These are objects at very far distances
emitting enormous amounts of energy and �nally identi�ed with active galactic nuclei
emitting in X-ray, ultraviolet and radio. The emission is around three orders of magnitude
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that of the total optical luminosity of the parent galaxy. Supermassive black holes at the
center of the galaxy o�er a mechanism for the generation of such amounts of energy, at the
expense of their huge gravitational energy. Along the years the black hole paradigm has
become established in the understanding of the properties and evolution's of galaxies.

iii) Intermediate mass black holes: M ∼ 103M�

There is no unambiguous evidence of the existence of black hole with these masses. They
can play an important role in certain astrophysical processes and could be natural inter-
mediate stages between stellar and massive black holes. However there is no observational
evidence of their existence.

iv) Primordial black holes: mass up to ∼ 1M�.

These are hypothetical black holes formed at early stages in the cosmological evolution of
the Universe from the collapse of over-dense matter regions. They could play an important
role to explain the formation of cosmological structures in the Universe.

Evidence of black holes

i) Stellar black holes. Best candidates for stellar black holes are in binaries in which the
companion is a normal (non-compact star) providing a �ow of material into the black
hole. Such material is heated as it forms an accretion disc, emitting in X-rays. From the
determination of the orbital parameters one can infer the mass of dark object. If the mass
is over 3M� is a candidate for a black hole and one aims to re�ne the assessment as a black
hole. For this, one can try to identify some of the signatures about the black hole presence
provided by general relativity, e.g. i) absence of a rigid boundary surface, existence of an
innermost stable circular orbit (see Lecture 9) a�ecting the properties of matter accretion
discs, broadening of the FeKα line by gravitational redshift, characteristic distribution of
mass and rotation multipoles...

See Table 1.1 in [1] for the best known 22 candidates. These studies, together with evo-
lutionary models and observation of massive stars indicates that stellar black holes are
actually very common objects. In our galaxy, the Milky Way, they are estimated to be
around 108 − 109, something corresponding to a fraction around 10−2 − 10−3 of the total
number of stars (around 1011 in the Galaxy).

From an astrophysical point of view, stellar mass black holes are important ingredients
in the explanation of jet structure of so-called micro-quasars or in models of (long) γ-ray
bursts.

ii) Massive black holes. Although the mechanism of formation of these black holes is not
known, massive and supermassive black holes stand as key ingredients in the most probable
explanation of the galactic nuclei activity.

These black holes are at the core of the mechanism for the emission of relativistic jets.
They are also able to provoke the tidal disruption of non-compact stars falling onto them
and showing a characteristic �ares in the electromagnetic spectrum. Maser radiation from
quasars also opens a tools to measure parameters of black holes. Finally, it is worthwhile
to note that quite recent observations of individual stars of the galactic center of the Milky
Way (namely SgrA∗) have permitted to establish the mass of the black hole at the center
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of our Galaxy as 4.6 · 106M�. The tools are very similar to the ones employed in the
determination of the mass from the kinematics of binary systems.

Before ending this subsection we note that black holes in general, and binary black holes in
particular, stand among the most important sources of gravitational radiation (see Lecture 11).
The gravitational radiation emitted from the surrounding of a black hole portrays very charac-
teristic signals of the dynamical spacetime geometry. In this sense, the ultimate tool to identify
a compact object as a black hole is provided precisely from the radiation made of the same fabric
as black holes: spacetime dynamics.

Black holes as basic objects in General Relativity

Black holes are not only relevant because of the role in some of the most violent events in the
Universe in astrophysical and cosmological scenarios. They are objects of enormous theoretical
interest on their own: on the one hand they represent particularly simple and clean probes into
the strong-�eld regime of general relativity, and on the other hand they stand as a cornerstone
piece in the puzzle of bringing together physics at di�erent level of description, namely gravity,
quantum mechanics and thermodynamics.

We simply list here some of the relevant aspects of black holes at a theoretical level:

• Simple classical objects. Black holes are simple strong gravity solutions in General Rela-
tivity. In fact, due to the �no-hair� theorems, in stationarity they are so simple that they
can be described only and completely by two parameters. This is extraordinarily singular
for a macroscopic object.

• Two-body problem in general relativity. Given that general relativity deals essentially with
extended objects, the resolution of the motion problem is a very complicated problem by
itself, that becomes only more complicate if we add the complexity associated to mat-
ter structure. In this sense, black holes provide a particularly clean �equation of state�
to study in particular the binary problem in general relativity without having to bother
simultaneously with hydrodynamical, rather than gravitational dynamics.

• Probes into general relativity strong-�eld regime. General relativity is well tested in the
regime of weak gravitational �elds, in particular through the dynamics of binary pulsars.
However, the dynamics of the strong �eld regime and in particular the control and under-
standing of the decay properties of �elds propagating in a strongly dynamical spacetime
are poorly understood. Black holes provide a particularly suited probe to study both the
stationary and dynamical aspects of the classical gravitational �eld.

• Black hole thermodynamics. The application of general relativity to black hole dynamics
leads to a series of laws in perfect analogy with those of thermodynamics. The analogy
reached a sounder physical status after the understanding by Hawking that a black hole
actually radiate energy according to the black body spectrum of an object in thermal equi-
librium, when semiclassical corrections are taking into account. This thermodynamical-like
result stands as a solid prediction of the interplay between gravity and quantum mechanics
and o�ers a test for any theory attempting to develop a quantum description of gravity.

• Cornerstone at the gravity, quantum mechanics and thermodynamical crossroad. The sta-
tistical mechanics understanding of the entropy of a black hole in terms of the number
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of states of the underlying system, is one of the most important task in approaches to
quantum gravity. It o�ers a test, but also insight to develop avenues into the problem of
marrying gravity and quantum mechanics. On the other hand, the evaporation of the black
hole through Hawking radiation raises the issue of the unitarity of the black hole evolution
description, leading to the black hole information loss problem.

• Black holes in higher dimensions. Motivated by quantum gravity scenarios involving higher
spacetime dimensions (namely string theory), there is an interest in understanding classical
solutions in higher dimensions presenting an event horizon. First, the uniqueness results as-
sociated with the �no hair� property of black hole is lost, o�ering a more complex panorama.
Second, so-called micro black holes of up to ∼ 1M� appear in speculative theories inspired
in so-called brane worlds. Third, unexpected mathematical properties shared with four-
dimensional black holes are maintained (namely the so-called hidden-symmetries), calling
for a still missing explanation.

1.4 Summary of Lecture 1

1. Gravitational collapse and mass:

i) Compact stars: radius decreases with mass.

ii) Maximal mass for white dwarfs and neutron stars.

iii) No known mechanism to stop the collapse above ∼ 3M�.

2. Black holes as a dramatic extreme case of light bending:

i) Tension: Special Relativity AND Gravity.

ii) Gravitational Redshift: incompatibility with �at spacetime.

iii) Spacetime curvature: bending of light.

3. Standard picture of classical gravitational collapse:

i) Chain of theorems and conjectures.

ii) A conceptual framework for black holes (...and a �Course Program�).

iii) Every point in the framework is challenged.

4. Interest in Black Holes:

i) Astrophysical and Cosmological.

ii) Clean probe into the structure of the gravitational theory: General Relativity.

iii) A key to physics uni�cation and to new physics.
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Figure 1.7: Star as a equilibrium between gravitational force and expanding pressure.

1.5 The classical standard picture of gravitational collapse: a �rst
physical overview

1.5.1 Star structure

We start by considering a simpli�ed Newtonian description of stars. The structure of stars is
basically governed by three simple laws, namely hydrostatic equilibrium, energy transport and
energy generation. For a spherical symmetric star (see Fig. 1.5.1):

dM(r)
dr = 4πr2ρ(r)
dP (r)
dr = −GM(r)

r2
ρ(r) (hydrostatic equilibrium)

dL(r)
dr = 4πr2ε ρ(r) (energy conservation)

dT (r)
dr = − 1

4πr2λ
L(r) (energy transport)

where the primary variables of the system M(r), P (r), L(r), T (r):

M(r): mass contained from the center r = 0 to the shell of radius r

P (r): pressure at radius r

L(r): energy �ow through the sphere of radius r

T (r): temperature at radius r.

In order to close the system we need:

• Equation of state: P = P (ρ, T,Xi), or inverting ρ = ρ(P, T,Xi)

• Coe�cient of conductivity: λ = λ(ρ, T,Xi)

• Energy production rate: ε = ε(ρ, T,Xi)
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with Xi accounting for the chemical composition. In addition we need boundary conditions.
This would parametrize the stars in terms of its radius. However, the radius is a bad parameter
since it is di�cult to determine either experimentally or a priori. A better choice is to choose
the mass of the star. For this we rewrite (1.54), with the mass contained inside a given shell as
parameter:

dr(M)
dM = 1

4πr2ρ(M)
dP (M)
dM = − GM

4πr4
(hydrostatic equilibrium)

dL(M)
dM = ε (energy conservation)

dT (M)
dM = − 1

16π2r4λρ(M)
L(M) (energy transport)

Appropriate (approximate) boundary conditions are:

r(0) = 0 , L(0) = 0 , P (Mstar) = 0 , T (Mstar) = 0

where Mstar is the total mass of the star, which becomes a parameter in the model.
The crucial ingredients to counteract the gravity and keep hydrostatic equilibrium are the

energy production rate and the equation of state. In gravitational collapse, part of the initial
gravitational energy is used to heat the matter. However, the resulting increase in the pressure is
not enough to reach the hydrostatic equilibrium. When the temperature is high enough nuclear
reactions are initiated and the resulting ε is able to keep the equilibrium and the life of star is
span. However, once this nuclear fuel is exhausted, the hydrostatic equilibrium is once more
lost and collapse continues. The collapse continues until matter reaches an stage in which the
equation of state is rigid enough. This leads to the formation of compact stars.

1.5.2 Compact stars

Degenerate Fermi gas. Fermions satisfy Pauli's exclusion principle, that prevents two fermionic
particles to be in the same quantum state. Electrons, protons and neutrons are fermionic par-
ticle of spin 1/2. This in particular means that for a given momentum p there can only be
two particles (spin-up and spin-down). As a consequence, particles occupy the phase space till
a maximum Fermi momentum pF. As a consequence of this motion, the resulting degenerate

Fermi gas acquires a pressure. It is this pressure that balances the gravitational force.
In our context the relevant particles are electrons and neutrons since, at su�ciently high

densities, protons and electrons su�er a weak force process (a form of beta-decay) known as
neutronization:

e− + p+ → n0 + νe (1.54)

The equation of state of a degenerate Fermi gas has two di�erent regimes: i) non-relativistic
regime, when the reached Fermi momentum satisfy pF � mc and ii) the ultra-relativistic regime,
when pF � mc. The equations of state di�er in both cases, although they share the key feature
of not depending on the temperature. We have (see e.g. [1])

relativistic Fermi gas: P = K ~2
m (NV )

5
3

ultra-relativistic Fermi gas: P = K ′~c(NV )
4
3

(1.55)

where N is the total number of fermions and K and K ′ are dimensionless constants.
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Degenerate stars. Estimating the density as ρ ∼ M/R3 and the pressure gradient as ∇P ∼
P/R we can write the hydrostatic equilibrium equation as GMρ

R2 ∼ ∇P

GM2 ∼ PR4 (1.56)

We also introduce the mass per Fermi particle m′ = M/N . Then, we can write:

• Non-relativistic regime: From Eq. (1.55)

P ∼ ~2

m

(
N

V

) 5
3

∼ ~2

m
· N

5
3

R5
(1.57)

so that from (1.56) we have

GM2 ∼ ~2

m
· N

5
3

R
(1.58)

and using m′

R ∼ ~2

Gmm′5/3
1

M1/3
(1.59)

From this we conclude that the larger the mass, the smaller the radius. This is the cru-
cial ingredient of the Fermi degenerate equation of state. It implies that as we consider
increasing masses the density and pressure also grow until we reach a (ultra-)relativistic
regime for the Fermi gas.

• Ultra-relativistic regime: Repeating the steps:

P ∼ ~c
(
N

V

) 4
3

∼ ~c · N
4
3

R4
(1.60)

and

GM2 ∼ ~c ·N
4
3 (1.61)

Remarkably, the radius disappears from the equilibrium relation, so that the mass is �xed

M ∼M? =
(~c/G)3/2

m′2
(1.62)

The conclusion is that for masses below M?, the pressure associated with the degenerate Fermi
gas supports the gravitational force. As the mass increases the radius decreases and the fermions
become more and more relativistic. Then the ultra-relativistic regime provides the critical mass
mass that can be supported by this mechanism.

White dwarfs are compact stars in which the degenerate Fermi gas is composed of electrons.
In this case, the limit to the mass is known as the Chandrasekhar limit and is about 1.44M�.
For neutron stars, resulting from supernova core-collapses of massive stars, the limit is referred
to as Tolman-Oppenheimer-Volko� and is less precisely established, depending essentially on the
details of the equation of state. A particular (exotic) class of neutron star are quark stars in which
the relevant degenerate fermions are strange stars (postulated as the ground state of baryonic
matter).

Beyond this mass, no mechanism is known capable of stopping the gravitational collapse.
The eventual result of this process is what we know as black hole. Black holes are a dramatic
extreme case of a characteristic feature of General Relativity: bending of light. And the latter is
a manifestation of a more general concept: spacetime curvature. Let us explore how this concept
emerges in the study of gravitation.
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2.1 Events in spacetime: manifolds and coordinates

Notion of manifold to describe events in space and time. Absence of a priori given structures in

General Relativity: all objects are �xed dynamically. Coordinates understood as labels without

intrinsic meaning: need of coordinate independence of physical statements.

2.1.1 The manifold of physical events

Newtonian description.

Let us start by considering the description of a point-like physical process happenning in space
and time in the context of Newtonian physics. A fundamental tenet in the theory is the existence
of a special class of reference frames in which Newton laws apply: these are called inertial frames.
This provides an �a priori� structure in the theory, �rigid� in the sense that does not result from
any dynamical equations. In particular, such frames provide a set of spatial coordinates (x, y, z)
and a time coordinate t, permitting to associate a �time label� and a �space label� with any
physical �event� p, say the presence of a particle:

p 7→ (tp, xp, yp, zp) (2.1)
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Considering a physical point-like particle to �x ideas, its evolution in time and space is described
by a �trajectory� parametrized by a label λ:

p(λ) 7→ (tp(λ), xp(λ), yp(λ), zp(λ)) (2.2)

In Newtonian physics, t is a universal parameter and it is natural to use λ = t so that (xp(t), yp(t), zp(t))
describe the trajectory. When writing down the dynamical equations, we have the freedom to
choose (x, y, z) up to a Galilean tranformation: translations, rotations and boosts.

t′ = t+ t0 , ~x
′ = ~x− ~a , ~x′ = R(ε) · ~x , ~x′ = ~x− ~vt , R(~ε) ∈ SO(3) (2.3)

Here ~ε can be parametrised, say, by the Euler angles. As an example of a rotation, we make
explicit the rotation of angle ϕ (Euler angle α) around the z axis, mixing the x and y coordinates

R(ϕ, 0, 0) =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 1

 (2.4)

On the other hand, coordinates (x, y, z) have a geometric content as associated with inertial
frames. In particular rotations preserves the Euclidean metric in R3: namely the symmetric,
de�nite-positive, non-degenerated quadratic form δ = diag(1, 1, 1)

RδRt = δ ⇔ RRt = I , (2.5)

forming the SO(3) when we require orientation preservation.

Special relativity.

The same reasoning essentially applies to special relativity. Although time is no longer absolute,
the notion of inertial frame exists, providing an a priori structure for the description of physical
events. The freedom in the choice of x = (ct, x, y, z) is up to a Poincaré transformation (namely
a�ne transformations preserving the symmetric, non-degenerated, signature (1, 3), quadratic
form η = diag(−1, 1, 1, 1)), where time and spatial coordinates are �mixed�

x′ = a + Λ · x . (2.6)

In particular linear transformations associated with matrices Λ preserve the Minkowski metric
diag(−1, 1, 1, 1) in R4

ΛηΛt = η , (2.7)

spanning the Lorentz group SO(1, 3). We make explicit the form of a boost along the x direction
with velocity v 

ct′

x′

y′

z′

 =


γ −v

cγ 0 0

−v
cγ γ 0 0

0 0 1 0

0 0 0 1




ct

x

y

z

 (2.8)
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with γ =
1√

1− (v/c)2
(the so-called Lorentz factor, needed to guarantee the unity of the squared

determinant of Λ, following from the preservation of the Lorentz metric). Noting γ2−(v/c)2γ2 =
1, we can write the boost matrix as

coshα − sinhα 0 0

− sinhα coshα 0 0

0 0 1 0

0 0 0 1

 (2.9)

where tanhα = −v/c. Note that, as the rotation R in (2.4) mixed coordinates x a y, the boost
trasnformation in (2.9) acts as a kind of rotation in the (t, x) subspace. In sum, also in special
relativity a geometric meaning is associated with the coordinate structure of inertial frames.

General Relativity.

A basic tenet in the general relativistic description is that all structures in the theory must be
determined dynamically, through the resolution of the appropriate equations. In particular, this
means that the a priori notion of (global) inertial reference frame is absent. Still, in order to have
an analytical description, we need to associate to a physical event p some �labels� (t, x, y, z), as in
(2.1). However, now the �coordinates� (t, x, y, z) are completely devoid of geometric or physical
meaning. They are simply labels without intrinsic meaning and the dynamical description should
be independent of them.

Physical statements must be also independent of the choice of coordinates. As an example,
the coordinate description of an object trajectory has no intrinsic physical meaning. Di�erent
descriptions are possible, none of them being privileged. Physical statements become relational
statements. For instance, the notion of �position� of a particle has no intrinsic meaning by
itself, but the �crossing� of two particles does. That is, the meeting of two objects along their
dynamical evolutions has an intrinsic physical meaning: the fact that the two trajectories cross is
independent of their coordinate description (cf. Fig. 2.1.1). Such �meeting� provides an example
of a spacetime �event�, that we model as a �point� in an appropriate space.

Spacetime manifold.

Spacetime is the ensemble M of all physical(/geometric) intrinsic events. As such, M is an
abstract space. We require some structure on this space, in particular an appropriate topology
providing with some basic notions of continuity that we would like to promote to our modelling
of this set of physical �events� 1.

1In particular, in our modelling of spacetime events we would like to be able to tell events apart, namely to
be able to refer to di�erent event as �separate� points, in such a way that for any two points in M there should
exist respective neighbourhoods of each of them which are disjoint. This is captured by the notion of �Hausdor��
space (also �separated� or T2 space). A second (technical) requirement to promote �local proofs� to a global stage
is that there should be exist a countable collection U of open sets, such that any open set in the topology can be
written as the union of a family of open sets in U . This chracterizes M as a �second-countable� space. As referred
above, this is a technical requirement that is key to use tools such the �partition of unity� to �glue� local results
into global proofs. The most important requirement is however that the spaceM should be locally homeomorphic
to Rn, for some n <∞. We refer to [6] for an appropriate presentation of these topological notions in the present
context.
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Figure 2.1: Two �observers� γ1 and γ2 travelling along their respective trajectories meet at points
p1 and p2. These two points constitute intrinsic �spacetime events�, that can be represented with
di�erent sets of coordinate labels.

The most important of these requirements is that we require that spacetime events can be
locally parametrized by formal time and space labels (the sense in which they refer to �time�
and �space� notions will be discussed later, once the notion of metric is introduced). That is,
independently of its global structure, M should locally look as Rn: we require that M can be
locally patched to open sets in R4.

More speci�cally, this leads to the notion of local chart, that is simply a way of parametrizing
an open set U ⊂M by an open set Ũ ⊂ Rn:

ϕ : U ⊂M → Ũ ⊂ Rn

p 7→ xµ ≡ (x0, . . . , xn−1) (2.10)

We require that ϕ is an homeomorphism (continuous with continuous inverse), so that at the local
level the topology ofM is that of Rn. We do not have �access� directly to p, but to its coordinate
representation xµ = (x0, . . . , xn−1). The coordinate representation has no physical/geometrical
content, and di�erent labelings are possible:

ϕ1 : U1 ⊂M → Ũ1 ∈ Rn , ϕ2 : U2 ⊂M → Ũ2 ∈ Rn

p 7→ (x0, . . . , xn−1) , p 7→ (y0, . . . , yn−1)
(2.11)

so that

ϕ2 ◦ ϕ−11 : ϕ1(U1 ∩ U2) ⊂ Ũ1 ⊂ Rn → ϕ2(U1 ∩ U2) ⊂ Ũ2 ∈ Rn

(x0, . . . , xn−1) 7→ (y0, . . . , yn−1) (2.12)

is an homeomorphism between open sets2 in Rn. In simple terms this represents a change of
coordinates in the local description of M in U1 ∩ U2:

yi = yi(x0, . . . , xn−1) , i ∈ {1, . . . , n− 1} . (2.13)

The spacetime stM is covered by a collection of charts (Ui, ϕi) and their transition functions
ϕij = ϕj ◦ ϕ−1i . Such complete collection of charts is called an atlas of M . This confers M

2Note that the domain and codomain of the �change of coordinates� ϕ2 ◦ ϕ−1
1 is actually determined by the

restriction in which both coordinate charts are valid, that explaining the given expression.
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Figure 2.2: Two �local charts� (U1, ϕ1 : U1 → Ũ1) and (U2, ϕ2 : U2 → Ũ2) covering the crossing
of the two trajectories γ1 and γ2. They provide two local representations of the same underlying
geometric objects. We access points in Ũ1 and Ũ2, never in M . The key element for the re-
construction of M from charts are the set of �transition functions� ϕij = ϕj ◦ ϕ−1i .

with the structure of a (topological) manifold. To further qualify the manifold M , we need to
impose further structure. The speci�c type of manifold we work with depends on the properties
we enforce on the transtion functions ϕij . Here, we will require functions ϕij = ϕj ◦ ϕ−1i to
be C∞ di�eomorphisms between charts Ũi and Ũj . In other words, we are going to work with
in�nite-di�erentiable changes of coordinates. This is a practical choice, but nothing guarantees
that it encodes the actual regularity of spacetime: this is not jst an academical issue, it actually
determines what we can prove and what we can, as we will see when discussing black hole
uniqueness theorems 3.

2.2 Vectors and one-forms at a point. Tangent and cotangen
spaces

Vectors on a manifold: tangent space. Vectors as derivations. Contravariant and covariant tensors.

Tensors as local (point-like) objects on the manifold. Passive and active views of coordinates

changes (di�eomorphisms): push-forward and pull-back transformations. Lie derivative as tensor

variation along an in�nitesimal di�eomorphism.

2.2.1 Linear approximation of the spacetime: tangent plane

We need more structure in order to manipulate e�ciently the geometrical/physical objects. In
particular, we aim at introducing the structure needed to translate the objects from calculus.
This leads us to consider the approximation of the manifold M by linear structures.

�gure derivative

This is in the very same spirit of approximating a non-linear di�erentiable function f : R→
R, x 7→ f(x) at a point x by its derivative

f(x+ h) = f(x) + h
df

dx
(x) + o(h) , (2.14)

3A challenging question in this setting is: what is the actual (fundamental or e�ective) �regularity� of spacetime?
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or, more generally, a non-linear di�erentiable application between open sets of two linear spaces
f : U ⊂ Rn → V ⊂ Rm by its di�erential at x (actually characterized as its best linear
approximation at that point x)

f(x+ h) = f(x) + df(x) · h+ o(h) , h ∈ Rn . (2.15)

In this sense, we want to be able to approximate M �close� to a given point p by a tangent plane
TpM . This tangent plane provides a linear approximation to M .

2.2.2 Vectors as curve derivatives.

A �rst way to look at the construction of such linear space TpM , is to consider vectors in TpM
as derivatives (�velocities�) of curves passing through p, i.e. γ : I ⊂ R→M , with γ(0) = p ∈M .
Considering a coordinate description4 of γ in coordinates {xµ} associated with a chart (ϕ1, U),
we can write

ϕ1 ◦ γ : I ⊂ R → Ũ1 = ϕ1(U1) ∈ Rn

λ 7→ xµ(λ) = (x0(λ), . . . , xn−1(λ)) . (2.16)

Note that ϕ1 ◦ γ is an application from I ∈ R to an open set of Rn. We demand such an
application to be di�erentiable at λ = 0 (that is, �at� the point p ∈ M). We introduce the
components of a vector v in TpM , in a basis associated with the local chart {xµ}, as

vµ =
dxµ

dλ

∣∣∣∣
λ=0

=


dx0

dλ
...

dxn−1

dλ


∣∣∣∣∣∣∣∣∣
λ=0

(2.17)

More precisely, this is the vector in Rn obtained from the application of the di�erential d(ϕ1 ◦
γ)(λ), evaluated at λ = 0, to the vector 1 ∈ R: v = d(ϕ1 ◦ γ)(0) · 1. The linear structure
in Rn permits to construct curves passing through ϕ1(p) ∈ Ũ1, whose tangent vectors can be
additioned and can be multiplied by scalars (this corresponds to the reparametrization of the
curve γ). Such curves can be transported to U ⊂ M through the homeomorphism ϕ−11 so that
addition and multiplication by scalars can be associated with the coordinate representation of
derivatives of curves in M .

In order to make this construction independent of the choice of coordinates, we consider the
representation of the derivative of γ at p in another local chart, say

ϕ2 ◦ γ : I ⊂ R → Ũ2 = ϕ2(U2) ∈ Rn

λ 7→ yµ(λ) = (y0(λ), . . . , yn−1(λ)) . (2.18)

To ensure the compatibility of linear structures induced on derivatives of γ at p from both
coordinate representations, we impose ϕ2 ◦ ϕ−11 and its inverse ϕ1 ◦ ϕ−12 to be di�erentiable,
namely ϕ1 ◦ ϕ−12 to be a di�eomorphism. In simple terms, the coordinate change (2.13) and

4An intrinsic de�nition of a vector at a point p, not referring to particular coordinates, can be done in terms
of classes of equivalence of curves passing through that point p and having the same velocity at it.
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its inverse must be di�erentiable. Indeed, rewriting the same curve γ in the coordinates {yµ}
associated to the chart (ϕ2, U2), and using (2.13) we �nd5, using the chain rule

dyµ

dλ

∣∣∣∣
λ=0

=

(
∂yµ

∂xν

)∣∣∣∣
x(λ=0)

dxν

dλ

∣∣∣∣
λ=0

, (2.19)

where the Jacobian matrix
(
∂yµ

∂xν

)
is the matrix representation of the di�erential d(ϕ2 ◦ ϕ−11 )

(
∂yµ

∂xν

)
=


∂y0

∂x0
. . . ∂y0

∂xn−1

...
. . .

...

∂yn−1

∂x0
. . . ∂yn−1

∂xn−1

 (2.20)

in the canonical bases in the respective linear spaces Rn corresponding to coordinates {xµ} and
{yµ}. The linearity of the di�erential guarantees the compatibility of linear structures induced
from both charts.

A vector v ∈ TpM can then be seen as the quotient of the set of coordinate representations
{vµx , vµy , . . . , vµi , . . .} (in the local charts Ui of the atlas such that p ∈ Ui) by the equivalence class
provided by (2.19), namely vµy ∼ vµx if there exists a di�erentiable change of variables y = y(x)
such that

vµy =

(
∂yµ

∂xν

)∣∣∣∣
ϕ1(p)

vνx . (2.21)

The linearity of operations on v ∈ TpM de�nes TpM as a vector space that we refer to as the
tangent space to M at p.

As we see, this construction requires the di�erentiability of the changes of charts ϕi ◦ ϕ−1j
between any elements of the atlas Uj and Ui (if not, we cannot establish an equivalence relation).
This de�nes a di�erentiable manifold 6.

2.2.3 Vectors as derivations: directional derivatives of a function.

A useful caracterization of the vectors of the tangent space TpM is given by a generalization of
the notion of directional derivative of a function. More speci�cally, let us consider a function
f : M → R and a vector v ∈ TpM . We would like to give a meaning to the directional derivative
of f at p along the direction v. Let us �rst consider a curve γ(λ) in M such that γ(0) = p
and dγ/dλ|0 = v. Then, we consider the coordinate representation of a function f : M → R in
coordinates {xµ} (in a neighbourhood of p)

f : Ũ1 → R
xµ 7→ f(xµ) = f(x0, . . . , xn−1) . (2.22)

In this local representation we can write the curve as xµ = xµ(γ(λ)) = xµ(λ) (note the slight

abuse of notation) so that xµo = xµ(p) = xµ(λ = 0) and vµ =
dxµ

dλ

∣∣∣∣
λ=0

. We can then calculate

5This is the �rst encounter to the so-called index convention of summation of repeated indices.
6Other conditions on the changes between local charts give rise to other type of manifolds, e.g. analyticity, Ck

conditions. For simplicity, we will restrain ourselves to C∞-di�erentiable manifolds.
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the derivative �at p� of the associated local represention of f ◦ γ, that is

df

dλ

∣∣∣∣
λ=0

=
∂f

∂xµ

∣∣∣∣
x(λ=0)

dxµ

dλ

∣∣∣∣
λ=0

=
∂f

∂xµ

∣∣∣∣
xo

vµ =

(
vµ

∂

∂xµ

∣∣∣∣
xo

)
f = v(f) . (2.23)

where we have denoted the vector v as v = vµ
∂

∂xµ

∣∣∣∣
xo

. Relaxing a bit the notation to emphasize

the geometric content7, we can write v = vµ
∂

∂xµ

∣∣∣∣
p

, so that v that can be understood as a

derivation on functions at point p

v(f) = vµ
∂f

∂xµ

∣∣∣∣
p

. (2.25)

This approach to tangent vectors provides a natural notation for the linear basis {exµ} at TpM
associated to {xµ}, as derivations along the coordinates xµ, namely

exµ ≡
∂

∂xµ

∣∣∣∣
p

(2.26)

When there is no possible confusion in the coordinate basis, we will denote ∂µ ≡
∂

∂xµ
. Therefore

we can write the vector v as

v = vµ∂µ|p (2.27)

2.2.4 Dual to the tangent space TpM : cotangent space T ∗pM .

The dual space T ∗pM to TpM is the set of linear applications

ω : TpM → R (2.28)

Given that TpM is a linear space of �nite dimensions, by duality (namely v(ω) = ω(v)) vectors
in TpM can be seen as linear applications

v : T ∗pM → R . (2.29)

Given the (ordered) basis {exµ} in TpM associated with a coordinate system {xµ}, we can intro-
duce the dual basis in T ∗pM , {ωµx}, that is characterised by

ωµx(exν) = exν(ωµx) = δµν . (2.30)

7The notation around Eq. (2.23), taking into account all the composed applications, results a bit cumbersome
and may hidden the actual geometric content. In this geometric spirit, we can abuse the notation and identify
p with either λ = 0 or xµ(p) = xµ(λ = 0) through the respective appropriate mappings (namely γ and the local
chart {xµ}), so that we can write vµ = dxµ/dλ|p and

df

dλ

∣∣∣∣
p

=
∂f

∂xµ

∣∣∣∣
p

dxµ

dλ

∣∣∣∣
p

=
∂f

∂xµ

∣∣∣∣
p

vµ =

(
vµ

∂

∂xµ

∣∣∣∣
p

)
f = v(f) , (2.24)

with v = vµ
∂

∂xµ

∣∣∣∣
p

. In the following we will follow the same criterium, unless otherwise speci�ed.
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A geometric understanding of ωµx comes naturally in terms of the di�erential of a function. Let
us consider the di�erential df at p in the local representation of f , as an application f : Ũ1 ⊂
Rn → R. Because of its linearity, the application df(p) : Rn ∼ TpM → R is an element in the
dual T ∗pM . In particular df(p) takes (linearly) vectors v in TpM to vectors (values) in R so that,
in the chosen local coordinates

df(p) (v) =
∂f

∂xµ

∣∣∣∣
p

vµ = vµ
∂f

∂xµ

∣∣∣∣
p

= v(f) , (2.31)

where the �rst step is just the matricial expression of the action of the di�erential and in the last
step we have used (2.25). In particular, by duality df(p)(v) = v(df(p)), we have the identities

v(df(p)) = df(p)(v) = v(f) . (2.32)

If we consider now as f the functions xµ : U1 → R provided by a local chart, we can evaluate
the action of their di�erentials dxµ(p) at p on the elements in the coordinate vector basis {exµ}

dxµ(p)(eν) = dxµ(p)

(
∂

∂xν

∣∣∣∣
p

)
=

∂

∂xν

∣∣∣∣
p

(xµ) = δµν (2.33)

From the characterization (2.30) of the dual basis {ωµx} we conclude

ωµx = dxµ(p) ≡ dxµ|p , (2.34)

so that the di�erentials of the coordinate functions at p provide a basis for T ∗pM , dual to the one
in (2.34) for TpM , given in terms of the partial derivatives. Finally, we can express the linear
form df(p) ∈ T ∗pM in this basis {ωµx}, by calculating its components as

df(p)(eµ) = df(p)

(
∂

∂xν

∣∣∣∣
p

)
=

∂f

∂xν

∣∣∣∣
p

, (2.35)

so that we can write

df(p) =
∂f

∂xν

∣∣∣∣
p

dxµ|p , (2.36)

that gives a geometric view on the di�erential of a function f at a point p.

2.3 Vector �elds and di�erential one-forms

Hitherto we have considered vectors tangent toM at a given point p ∈M , namely in the tangent
space TpM . We are going to consider now the smooth assignment of a vector vp to each point
at p ∈M . This is the idea of a smooth vector �eld on M , as a �smooth� mapping

v : p ∈M 7→ vp ∈ TpM (2.37)

In the same spirit, a smooth 1−form on M is a �smooth� mapping

α : p ∈M 7→ αp ∈ T ∗pM . (2.38)
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Let us denote the ensemble of vector �elds on M as TM and the ensemble of 1-forms as T ∗M .
Then, we can see a vector �eld as a C∞(M)-linear application

v : T ∗M → C∞(M)

α 7→ v(α) , (2.39)

that is smooth in the sense that v(α) is a C∞(M) real function of M

v(α) : M → R
p 7→ vp(αp) . (2.40)

That is8

v(fα+ gβ) = fv(α) + gv(β) ,∀f, g ∈ C∞(M) , ∀α,β ∈ T ∗M (2.41)

and v(α),v(β) ∈ C∞(M). In analogous manner, a 1-form can be seen as a smooth C∞(M)-
linear mapping

α : TM → C∞(M)

v 7→ α(v) . (2.42)

Given a local chart with coordinates {xµ}, the bases (2.26) and (2.34) or TpM and T ∗pM extend
to the bases of TM and T ∗M (as C∞-modules)

eµ = ∂µ , ωµ = dxµ . (2.43)

2.3.1 Vector �elds as function derivations.

We provide an altenative characterization of vector �elds and make contact again with the original
introduction of a vector at a point p as a derivation of a function f at p. Letting p move in M
and assigning vectors smoothly as p changes characterizes also a vector �eld. Namely, from the
identities in (2.32), we can alternatively formulate smooth vector �elds as derivations on smooth
C∞(M) functions, by permitting the p to vary in M .

This is formalized in the notion of �derivation on C∞(M)�, namely an application

v : C∞(M)→ C∞(M) (2.44)

that:

i) It is R-linear.

ii) It satis�es the Leibniz rule: v(fg) = v(f)g + fv(g).

Given (2.32), the ensemble of �derivations on C∞(M)�, denoted by X(M), coincides with
TM . De�ning the commutator:

[v,w](f) = v(w(f))−w(v(f)) , ∀f ∈ C∞(M) , (2.45)

[·, ·] satis�es:
8This C∞(M)-linearity is inherited from the de�nition (2.40) and the R-linearity of vectors acting on 1-forms

at p. By duality, the space TM is C∞(M)-linear, but note that this does not de�ne a vector space, but rather a
C∞(M)-module, since C∞(M) is a ring, but not a �eld (as R).



2.3 Vector �elds and di�erential one-forms 35

i) R-bilinearity.

ii) Skew-symmetry.

iii) Jacobi identity.

This confers X(M) with the structure of an (in�nite-dimensional) Lie algebra.

As indicated above, the equivalence between a vector �eld v seen as a C∞-linear application
on 1-forms and as a R-linear derivation on C∞ functions follows from the upgadre of Eq. (2.32)
to the �eld level, namely

v(df) = df(v) = v(f) . (2.46)

2.3.2 Vector �elds as dynamical systems: integral curves and vector �ows

A vector �eld v assigns smoothly a vector vp to each point of the manifold. We can consider a
curve γ : I → M such that its velocity, that is it tangent vector va = dγadλ, coincides at each
point p = γ(λ) of the curve with the vector vp of v at that point. Such a curve, tangent to v is
called an integral curve of the vector �eld.

If we consider a coordinate chart, U, {xa}, so that the vector �eld is written as X = Xa∂a,
the curve γ with local parametrization xa(λ) is an integral curve of x if it satis�es

dxa

dλ
= Xa . (2.47)

This de�nes in the open set Ũ ⊂ Rn a system of ordinary di�erential equations, that is, a
dynamical systems. Vector �elds are therefore dynamical systems on manifolds.

We assume that the solution (2.47) can be extended to the whole manifold M . This provides
with the following mapping

F : I ⊂ R×M → M

(λ, x) 7→ Fλ(x) (2.48)

such that γxo(λ) := Fλ(x0) is an integral curve starting at x0, that is γxo(0) := F0(x0) = x0.
The one-parametic �ow mapping F can be seen from two perspectives:

i) Fixing x0 it provides the integral curve to X starting at x0.

ii) Fixing λ it sends points x ∈ M to points Fλ(x). Since the vector �eld assigns a unique
vector at each point, Fλ provides a (local) di�eomorphism (as long as it does not vanish,
where critical point of the dynamical system occur).

In the sense ii), vector �elds v can be seen as in�nitesimal di�eomorphisms. Together with the
derivation commutator (2.45), this constitutes the Lie algebra of local di�eomorphisms.

The one-parametric �ow Fλ in (2.48) will play a key role later when introducing the notion
of Lie derivative. Although it would natural, from a structural mathematical perspective to
introduce such a notion here, we will introduce when discussing the symmetries of a spacetime.
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2.4 The metric tensor. Metric type of vectors.

The spacetime is more than the collection of occurring physical �events�. It encodes fundamen-
tally the notions of standard �clocks� and �rules�. The latter entail the notion of �distance�,
either in �time� or in �space� and are therefore metric notions. The spacetime must be therefore
endowed, at each point, with a structure capable of determining which are the spacelike direc-
tions, the timelike directions and the directions followed by light rays, as well as spatial and time
distances between events.

Following the model of special relativity, this is accomplished by introducing an additional
structure to the di�erentiable manifold M , namely a (non-degenerate) Lorentzian metric tensor
g. A spacetime is then given by the couple (M, g).

2.4.1 Metric �tensor�

In the next chapter we will discuss systematically the general notion of a tensor. At this stage,
we just introduce a geometric object that, at each point p ∈ M , provides a quadratic form gp
on TpM in such a way that this assigment is smooth. Following the model of vector �elds and
one-forms, we upgrade the R-bilinear TpM form to a C∞-bilinear form on TM. That is, we
introduce a mapping

g : TM× TM → C∞(M)

(v,w) 7→ g(v,w) . (2.49)

C∞-bilinear in both entries. In the next chapter we will refer to g as 2-times covariant tensor.
In order g to represent a metric �eld, we require

i) It is symmetric: g(v,w) = g(w,v), ∀v,w ∈ TM.

ii) It is non-degenerate: if v is such that g(v,v) = 0, ∀w, then v = 0.

Given two one-forms α, β ∈ T ∗M, characterized as C∞(M) linear mappings α, β : TM → R,
we can introduce the tensor product α⊗β (to be generalized in next chapter to general tensors)
as

α⊗ β : TM× TM → C∞(M) (2.50)

such that

α⊗ β(v,w) = α(v)β(w) , ∀v,w ∈ TM , (2.51)

the C∞(M)-linearity of α and β guarantees the C∞(M)-bilinearity of α ⊗ β. Moreover, given
a basis {ωa} of T ∗M, a basis of C∞(M)-bilinear mappings (2.49) is provided by the tensor
products {ωa ⊗ ωb}. In particular, choosing a chart (U, {x} we have seen that the set of forms
{ωa = dxa} provide a basis for one-forms. Therfore, in this local chart, the metric g can be
written as

g = gabdx
a ⊗ dxb (2.52)

for C∞ functions gab. In this chart, the metric conditions above translate in:

i) The matrix gab is symmetric: gab = gba.

ii) The matrix gab is non-degenerate. In particular, det(gab) 6= 0 and, at each point, the inverse
matrix (gab)

−1 exists. We shall denote that inverse as gab, so

gabgbc = gcbg
ba = δab . (2.53)
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Raising and lowering of indices.

The metric gµν provides a canonical isomorphism between TM and T ∗M , not depending on
coordinates. Indeed, given its non-degenerate character we consider the metric tensor on T ∗M
whose component expression, denoted as gµν is given by the inverse matrix of gµν . That is

gµρgρν = gνρg
ρµ = δµν (2.54)

Then, given a contravariant vector V µ and a covariant vector αµ, we construct the associated
covariant and covariant vectors, respectively, as

Vµ ≡ gµνV ν , αµ ≡ gµναν (2.55)

This operations are usually referred to as lowering and raising indices.

2.4.2 Lorentzian signature: vector metric types and light cone.

Lorentzian signature

The symmetric tensor g can be diagonalized at each point p ∈ M . In particular, at each TpM ,
a basis of vector can be chosen such that the metric is diagonal with only 1 or 1 in the diagonal
(the non-degeneracy conditions guarantee that there are no zeros in the diagonal). If the metric
can be taken at each point of M to the form

gp =


−1

1

. . .

1

 , (2.56)

we say that is of Lorentzian type. We say that it has Lorentzian signature that we write sign(q) =
(−1 1 . . . 1).

Note that there is an equivalent choice as sign(g) = (1−1 . . .−1). Both of them are natural in
di�erent settings, namely the (−11 . . . 1) if we want to make contact with the Riemann geometry
of �space-slices� and (−11 . . . 1) if one is focusing trajectories of particles (as it is the case usually
in high-energy physics) or in the spinorial approach to General Relativity. Here we will stick to
the (−11 . . . 1) convention.

As a non-denerate 2-times covariant tensor, the metric g provides an isomorphism between
TM and T ∗M . This is referred to as raising and lowering indices in the relativity literature

] : T ∗M → TM
α 7→ α] (2.57)

such that

g(α],v) = α(v) , ∀v ∈ TM (2.58)

and

[ : TM → T ∗M
v 7→ v[ (2.59)
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such that

v[(α) = g(v,w) , ∀α ∈ T ∗M (2.60)

In particular, in a coordinate basis it follows

v = va∂a → v[ = vadx
a , withva = gabv

b

α = αadx
a → α] = αa∂a withαa = gabαb (2.61)

Light cone

The squared-norm of a vector v at a point p ∈M is given by

v2 = g(v,v) = gabv
avb = vavb (2.62)

The Lorentzian nature of g permit to classify the vectors at TpM in three cathegories:

i) Spacelike vectors: gabv
avb > 0.

ii) Timelike vectors: gabv
avb < 0.

iii) Lightlike or null vectors: gabv
avb = 0.

Therefore, the Lorentzian structure of the spacetime permits to introduce at each point p the
notion of light cone, as the set of vectors in TpM of zero norm.

Light or null curves move along light cones in trajectories with null derivative vector. Particles
moving at a speed smaller that light velocity lay inside the light cones, with timelike derivatives.
Finally, particle moving faster than light, or simply curves joining points that are simultaneous

in some coordinate system, have spacelike derivatives. Null and timelike curves are referred as
causal.

The light cone separates TpM in three parts: two non-connected interior regions with timelike
vectors, a connected (if dim(M) ≥ 3) exterior region formed by spacelike vectors, and the light
cone itself with null vectors. In particular, at each point p ∈ M one assigns a future and past

character, respectively, to each one of the connected components of the timelike region, as well
as its component of the light cone.

[Figure lightcone]

2.4.3 Some basic causal notions

. The structure given by the emsemble of light cones determines the causal structure of spacetime.
In particular, in this causality context it is natural to require that a global assignment of future
and past can be consistently introduced. If such an assignment is possible, the spacetime (M, g)
is said to be time orientable.

[Non-orientabl spacetime]

Lemma 1 (Time orientability). If (M, g) is time orientable, then there exists a (global)

smooth nonvanishing timelike vector �eld t ∈ X(M).
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2.4.4 Measuring proper distances and proper times: element of line.

The light cone structure of the spacetime allows us to structurate the spacetime in spacelike,
timelike and lightlike directions. But the metric has more structure (actually very little more, just
a scale), permitting us to measure distances spacelike curves and time intervals along timelike
curves. This is provided by the notion of element of line associated to the metric in a given
coordinate system, simply a quadratic form on in�nitesimal displacements in spacetime:

ds2 = gµνdx
µdxµ (2.63)

This can be seen as a generalization of Pythagoras theorem for in�nitesinal triangles.
If we consider a spacelike curve γ(λ) parametrized by λ in coordinates {xµ}, i.e. (xµ(λ)), the

evaluation of (2.63) on γ(λ) gives

ds2 = gµν(γ(λ))
dxµ

dλ

dxµ

dλ
dλ2 . (2.64)

For a spacelike curves the arc length can be simply written as

ds =

√
gµν(γ(λ))

dxµ

dλ

dxν

dλ
dλ (2.65)

With our convention for the spacetime signature (−1, 1, 1, 1), the element of proper time along
timelike curves is given by −c2dτ = ds2, that is

dτ =
1

c

√∣∣∣∣gµν(γ(λ))
dxµ

dλ

dxν

dλ

∣∣∣∣dλ (2.66)

2.4.5 Observers.

An observer in General Relativity is provided by a timelike curve γ whose 4-velocity uµ is
normalized to −1, that is

uµ =
dµ

dλ
, uµuµ = gµν(γ(λ))

dxµ

dλ

dxν

dλ
= −1 (2.67)

Using (2.66) we can write uµ = dxµ

dτ .

2.5 Minkowski spacetime. Rindler coordinates

The �rst spacetime we have encountered corresponds to the one in special relativity, correspond-
ing to the absence of gravity. Its line element in coordinates corresponding to an inertial frame

ds2 = −c2dt2 + dx2 + dy2 + dz2 (2.68)

Note that Poincaré trasnformations (2.6) preserve the form of this line element. They are the
�rst example of isometries. The Minkowski geometry illustrates some of the points in this lecture.
First, note that parametrizing a timelike curve by λ = ct, proper time writes

dτ =

√
1− 1

c2
d~x

dt
· d~x
dt
dt (2.69)
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and an observer

uµ =

(
γ, γ

d~x

dt

)
(2.70)

with γ = dt/dτ = 1/
√

1− 1
c2
d~x
dt ·

d~x
dt .

2.5.1 Absence of geometric meaning in the coordinates

We have insisted in the absence of a priori geometric meaning in the coordinates in General
Relativity. This is illustrated byy the following example. Consider the metric with line element

ds2 = − 1

t2
dt2 + dx2 + dy2 + dz2 (2.71)

for 0 < t <∞, −∞ < x <∞, −∞ < y <∞, −∞ < z <∞. This suggests a metric with a bad
behaviour as one approaches t = 0, possibly indicating some geometric non-trivial behaviour in
its vicinity. However, if we make the transformation of variables

t′ = ln t , x′ = x , y′ = y , z′ = z (2.72)

with −∞ < t′ < ∞, −∞ < x′ < ∞, −∞ < y′ < ∞, −∞ < z′ < ∞. we realize that the metric
can be written as

ds2 = −c2dt′2 + dx′2 + dy′2 + dz′2 (2.73)

where we recognize the familiar Minkowski spactime. We conclude that coordinates (t, x, y, z)
are just labels without any intrinsic meaning.

Remarks.

• i) The expression choice of coordinates actually refers to the freedom in choosing the func-
tional form of four of the functions in the set of ten functions gµν(x), where {xµ} are just
formal labels without meanings.

In general, for a given metric the remaining six functions cannot be freely chosen (the
freedom in coordinate choice is exhausted). In particular the question of under which
conditions a line element can be trasnformed to the form (2.68), implies the resolution
of an overdetermined system of partial di�erential equations, so that in general has no
solution. Only in special cases satisfying certain integrability conditions the system can
be solved. As we will comment later, this integrability conditions are given in terms of a
tensorial quantity, precisely the curvature tensor. In other words, the gravitational �eld.

• ii) The singular behaviour in the metric functions can be due to two reasons: a) an actual
singularity in the metric, b) a pathologic behaviour of the coordinates. Deciding with is
the case is not always easy. The Rindler metric provides below a paradigmatic example of
this that illustrates the behaviour that we will �nd in black holes.
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2.5.2 Rindler spacetime

Let us now consider a more interesting example referred to as Rindler spacetime.
Let us consider the line element in a chart Ũ1 = {t, x} that covers the whole spacetime (M, g)

ds2 = −x2dt2 + dx2 , x ∈]0,∞[ , t ∈]−∞,∞[ . (2.74)

As we see, something seems to wrong with metric at x = 0, where the determinant vanishes
and the metric is not invertible. This x = 0 seems as a �border� of spacetime through which we
cannot get. Is this a geometric intrinsic issue or is it an artifact of the coordinate description?

Let us recast this metric in a di�erent form. We are going to look for coordinates adapted to
the geometry of the problem, namely to null directions. For this we consider curves γ : I → M
that in the local chart is is written as λ 7→ (t(λ), x(λ). The correspondinf tangent vector

ua =

(
dt

dλ
,
dx

dλ

)
. (2.75)

Enforcing γ to be null at every point amounts to impose, usinf the line element (2.74)

uaua = 0⇔ −x2
(
dt

dλ

)2

+

(
dt

dλ

)2

= 0 (2.76)

That is (
dt

dλ

)2

= x2
(
dt

dλ

)2

, (2.77)

from which we can write (assuming, e.g. dt
dλ > 0)(
dt

dx

)2

=
1

x2
, (2.78)

that leads to two solutions

dt

dx
= ±1

x
⇒

 t = lnx+ u

t = − lnx+ v
(2.79)

where u and v are integration constants. At this point note that a given point in the chart
U ⊂ M can be labelled uniquely both by the coordinates {t, x}, but also by the pair of labels
{u, v}, since the intersection of u = constant1 and v = constant2 univoquely de�ned the point.
That is we can introduce another chart Ũ2, {u, v} with coordinate change (�transition functions�
ϕ12 and ϕ21 given by u = t− lnx

v = t+ lnx
,

 t = 1
2(u+ v)

x = e
v−u
2

,
u ∈]−∞,∞[

v ∈]−∞,∞[
(2.80)

From this we can write the respectice relation between the coordinate basis for 1-forms du = dt− 1
xdx

dv = dt+ 1
xdx

,

 t = 1
2(du+ dv)

x = 1
2e

v−u
2 (du− dv)

(2.81)



42 Gravity as spacetime curvature I: manifolds, vector �elds, spacetime metric

Inserting this into (2.74) we get

ds2 = −ev−ududv , (2.82)

At this point we can consider a second change of variables (that can be actually justi�ed in
geometric terms as looking for an �a�be parameter�, cf. [10]), to a new chart Ũ3, {U, V }, with
coordinate change  U = −e−u

V = ev
,

U ∈]−∞, 0[

V ∈]0,∞[
. (2.83)

(Notice that we could have chosen to place the �minus� sign − di�erently, see below). Under this
change for coordinates we get

dU = e−udu , dV = evdv , (2.84)

so that we �nally get

ds2 = −ev−ududv = −dUdV , −∞ < U < 0 , 0 < V <∞. (2.85)

If we look at the metric in this form, we see that there is no problem in the limits U → 0
and V → 0. Actually we can �extend� the metric to an enlarged range of the variables {U, V }.
Namely, we can �enlarge� the spacetime M to M̃ , the latter being now covered by a new chart
Ũ4, {U ′, V ′} with  U ′ = U

V ′ = V
, −∞ < U ′ <∞ , −∞ < V ′ <∞ . (2.86)

At this point, we can introduce a �nal chart Ũ5, {T,X} determined by the relations T = 1
2(U + V )

X = 1
2(U − V )

,

 U = T −X

V = T +X
,

T ∈]−∞,∞[

X ∈]−∞,∞[
(2.87)

When writing the (extended) line element in this coordinates we �nd

ds2 = −dT 2 + dX2 , T ∈]−∞,∞[ , t ∈]−∞,∞[ . (2.88)

that we recognize as the Minkowski spacetime (M2, eta) in dimension 2.

Rindler spacetime as a subset of Minkowski

The use of primes in (2.86) serves to emphasize that the ranges of the variables have in extended.
Admittedly, such notation is a bit pedantic and we shall omit the primes in the following, just
paying attention to keep track of the appropriate ranges.

Let us map the Rindler spacetime into the Minkowski spacetime. For this, let us explicitly
�nd the coordinate change between charts Ũ1, {t, x} and Ũ5, {T,X}. We write �rst the coordinate
changes we have introduce above

ϕ21 :

 t = 1
2(u+ v)

x = e
v−u
2

, ϕ23 :

 U = −e−u

V = ev
, ϕ53 :

 U = T −X

V = T +X
(2.89)
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From this, we �rst try to express x as a function of (T,X). For this we write

x = (−V U)
1
2 = (X2 − T 2)

1
2 (2.90)

Analogously, using u = − ln(−U) and v = lnV , we can write

t =
1

2
(− ln(−U) + lnV ) =

1

2
ln

(
−V
U

)
=

1

2
ln

(
X + T

X − T

)
=

1

2
ln

(
1 + T/X

1− T/X

)
= tanh−1

(
T

X

)
(2.91)

From this, we can conclude

ϕ51 :

 t = tanh−1
(
T
X

)
x = (X2 − T 2)

1
2

(2.92)

To construct the inverse change, we just notice

x2 = X2 − T 2 ⇐⇒ 1 =

(
X

x

)2

−
(
T

x

)2

, (2.93)

from which we can write, for some α ∈ R

X

x
= coshα ,

T

x
= sinhα , (2.94)

from which

tanhα =
T

X
⇔ α = tanh−1

(
T

X

)
, (2.95)

and from (2.91) we conclude α = t. Putting together the coordinate changes, we can write

ϕ51 :

 t = tanh−1
(
T
X

)
x = (X2 − T 2)

1
2

, ϕ15 :

 X = x cosh t

T = x sinh t
, (2.96)

so we see that the change (t, x)→ (T,X) is just a change into �hyperboloidal polar� coordinates
in which the role of the �radius� is played by the position x and the �angle� is the time label
�t�. Intuition in the geometry of the problem is gained by comparing how the coordinate lines
x = constant and t = constant.

Make Figure

Interpreting Rindler spacetime

More geometric intuition, and as a �rst practice in manipulated vector �elds, is git from the
coordinate vector �elds in each chart.

We focus here on ∂t. Note �rst that no coordinate function of g depends on x so, in the sense
that ∂tgab = 0, this vector �eld leaves the metric invariant and we refer to it as an in�temisal
isometry. We will formalise this notion later in terms of the notion of Lie derivative.
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Then, let us compare how the coordinate vector �elds in the di�erent coordinates relate to
each other. pplying the change rule to the coordiante transformations above, we can write

∂t = ∂u + ∂v = −U∂U + V ∂V (2.97)

From here, we �nally obtain

∂t = T∂X +X∂T . (2.98)

This expression is particularly illuminating since, as we will see when introducing in�nitesimal
isometries, it corresponds to a in�tesimal generator of a �boost� along the X direction. It is
illustrative to solve the associated dynamical system de�ned as

dxa

dλ
= (∂t)

a , (2.99)

that, in (T,X) coordinates write

dT

dλ
= X

dX

dλ
= T , (2.100)

that can be written as a second order di�erential equation

d2T

dλ2
= T ⇐⇒ d2T

dλ2
− T = 0 , (2.101)

with solutions

T = X0 coshλ+ T0 sinhλ , (2.102)

for constants X0 and T0, this implying

X = X0 sinhλ+ T0 coshλ , (2.103)

so we can write X
T

 =

 coshλ sinhλ

sinhλ coshλ

X0

T0

 (2.104)

corresponding precisely to a boost transformation where λ is actually a �celerity� α related to
the boost . This indicates that the trajectories associated with the integral curves of the vector
∂t, that in (t, x) just stay at a �x x0, correspond from the Minkowski perspective to trajectories
of increasing velocity, since λ grows without bound.

Let us push a bit further the intuition on this accelerated motion and therefore, on the
interpretation of this �spacetime� from a physical perspective. For this we consider the notion of
observer introduced above, adapted to the integral curves of ∂t. First of all we notice that t

a∂t
is indeed timelike (indeed, g(∂t, ∂t) = −x < 0) so that we can de�ne an observer associated with
the �xed x = x0 position

ua =
1√
|tata|

ta =
1√
|gtt|

ta =
1√
x20
ta =

1

x0
ta , (2.105)
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Since we can write

ua =
dxa

dτ
, (2.106)

we can write

dt

dτ
=

1

x
,
dx

dτ
= 0 , (2.107)

so that the solution to the curve along the ∂t vector is

(t =
1

x0
τ, x = x0) (2.108)

In particular this means that the α parameter associated with boost velocity v by v = tanhα, is
given by α = t = 1

x0
τ . This gives a loose notion that 1

x0
actually provides a notion of acceleration,

and the latter is constant. To be more precise, if we evaluate the relativistic velocity ua in (T,X)
coordinates along a curve (2.108), using (2.96) to get

uT =
dT

dτ
= cosh

( τ
x0

)
uX =

dX

dτ
= sinh

( τ
x0

)
, (2.109)

and then we calculate the relativistic acceleration by taking a second derivative aa 9 along τ , as
aa = dua

dτ , we get

aT =
duT

dτ
=

1

x0
sinh

( τ
x0

)
aX =

duX

dτ
=

1

x0
cosh

( τ
x0

)
. (2.110)

If we compute now the spacetime �norm� we get

g(a,a) = gaba
aab = aaaa = −

(
1

x0
sinh

( τ
x0

))2

+

(
1

x0
cosh

( τ
x0

))2

=
( 1

x0

)2(
cosh2

( τ
x0
− sinh2

( τ
x0

))
=
( 1

x0

)2
> 0 (2.111)

So we �nd that aa is a spacelice vector (as it should, since it must be orthogonal to the normalised
relativistic velocity), and its norm is constant (on a given curve!)

|a| = 1

x0
(2.112)

An interpretation of such trajectories is that they correspond to uniformly accelerated observers
in Minkowski, and the �Rindler spacetime� to the description of Minkowski from the perspective
of such obsercers.

Remark 1: Remarks about Rindler spacetime: to further develop

9An important warning: this is an operation we have not yet de�ned in general, namely the derivative of a
vector. In this particular �at case, and in this coordinates (T,X), this is however a legitimate calculation as we
will see once we will introduce connections.
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i) Spacetime as seen by an accelerated observer.

ii) Rindler is a wall of light moving to the right, and an observer excaping from it at a constant
acceleration.

ii) One can cover the whole Minkowski with other �Rindler charts�, by adapting appropriately the
signs in the coordinate changes. [Exercise!]

• Resemblance to Schwarzschild, from a metric perspective.

• Interpretation from the �equivalence principle�: on the �constant� gravitational �eld and Bell's
acceleration.

• Open project: relate to Unruh e�ect.

• Notion of horizon: causal disconnection.

2.6 Basic causality notions
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3.1 Tensors

We introduce tensors, namely the tools to write equations that ta well de�ned point-wise and

expressed in a manner explicitly independent of the chose coordinates: if the equation is valid a

coordinate system is valid in any other. Introduction of derivatives of tensors. Connections and

curvature.

3.1.1 Tensor �elds

Taking a step further, we can de�ne the space T nm(M) of n-times contravariant and m-covariant
tensor �elds as the ensemble of C∞(M)-multilinear smooth applications

T : T ∗M × . . . n) × T ∗M × TM × . . .m) × TM → C∞(M) . (3.1)

T nm(M) is also denoted as
(
n
m

)
. We note that TM = T 1

0 (M) and T ∗M = T 0
1 (M). Using the

notion of tensor product (over the module C∞(M)), we can write T nm(M) as

T nm(M) = TM ⊗ . . . n)TM ⊗ T ∗M × . . .m)T ∗M = TM⊗n ⊗ T ∗M⊗m (3.2)

This characterization has the advantage of providing directly a local chart basis in T nm(M), in
terms of tensor products of the bases in (2.43). In brief, we can write

T = Tµ1µ2...µnν1ν2...νm∂µ1 ⊗ ∂µ2 . . .⊗ ∂µn ⊗ dxν1 ⊗ dxν2 . . .⊗ dxνm , ∀T ∈ T nm(M) . (3.3)

This permits us to write the transformation rule of tensors under a change of coordinates. If we
write in two coordinate systems

T = T i1...inj1...jm
∂

∂xi1
⊗ . . .⊗ ∂

∂xin
⊗ dxj1 ⊗ . . .⊗ dxjm
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and

T = T ′i1...inj1...jm
∂

∂x′i1
⊗ . . .⊗ ∂

∂x′in
⊗ dx′j1 ⊗ . . .⊗ dx′jm ,

then it follows from multilinearity

T ′i1...inj1...jm =

(
∂x′i1

∂xk1

)
. . .

(
∂x′in

∂xkn

)(
∂xl1

∂x′j1

)
. . .

(
∂xlm

∂x′jm

)
T k1...kn l1...lm .

Tangent, cotangent and tensor bundle.

An alternative approach to tensor �elds is captured in terms of the notion of tangent bundle
over M . In particular, we consider a space formed by each point p ∈ M (M is the base of the
bundle) together with its tangent plane TpM considered as a �ber. The ensemble formed by all
theses pairs (p, TpM) form an space (actually a manifold) referred to as the tangent bundle TM .
Analogously one introduces the cotangent bundle T ∗M as the union of all points together with
their cotangent space. That is

TM =
⋃
p∈M

TpM , T ∗M =
⋃
p∈M

T ∗pM . (3.4)

A bundle P has a natural projection to its base π : P →M , so that every point in the bundle can
be �vertically� projected to a point in M . In this setting, a vector �eld v is a smooth application
from M to TM that sends (smoothly) each p ∈M to a point in its �ber (namely π ◦ v = idM ).
That is

v : M → TM (3.5)

p 7→ vp ∈ TpM . (3.6)

Such an application is called a smooth section of the tangent bundle TM . In particular, the set
of vector �elds TM introduced above is the set of sections of the bundle TM . Analogously, a
1-form α is a smooth section in the cotangent bundle T ∗M

α : M → T ∗M (3.7)

p 7→ αp ∈ TpM . (3.8)

We can the consider the tensor bundle TnmM as

TnmM = TM ⊗ . . . n) ⊗ TM ⊗ T ∗M ⊗ . . . . . .m) ⊗ T ∗M = TM⊗n ⊗ T ∗M⊗m (3.9)

A n-times contravariant and m-times covariant tensor �eld is then a smooth section in the tensor
bundle TnmM . The bundle formalism is the natural language to address global topological issues
related to tensor �elds. In our present setting we will not resort to its full strength 1.

1Still another approach to vector �elds, and the 1 − forms and tensor �elds by duality and multilinearity,
would be in terms of the notion of derivations of functions C∞(M). Indeed, when looking at a vector vp ∈ TpM
as a derivation on C∞(M), vp de�nes the R-linear mapping

vp : F(M)→ R . (3.10)

A vector �eld v provides a smooth rule to vary p on M , in such a way that when acting at each p on functions
in C∞(M) we obtain functions that are also smooth. In other words, a vector �eld is smooth C∞(M)-linear
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Tensors as point-like and multi-linear objects.

Note that from the very construction tensors are point-like objects. In addition, their multi-linear
character guarantees the following key property: If a tensor vanishes in a certain coordinate
system, it vanishes in all coordinate systems.

Gradients, vectors, directional derivatives.

A generalization of the standard gradient ∇f of a function is provided by df . Contracting the
gradient with a given vector V µ, we construct the directional derivative along V µ. The latter
is given above by V (f) = V (df). It is useful to introduce a notation in terms of the �nabla�
operator

∇f = df = ∂µfdx
µ = ∇µfdxµ (3.13)

∇V f = V (df) = V (f) = V µ∂µ(f) = V µ∇µf (3.14)

where ∇µf = ∂µf .

3.2 Exercises: tensor manipulation (indices gymnastics).

• Transformation rules of contravariant and covariant vectors under a coordinate transfor-
mation.

• Transformation of the metric tensor.

• Transformation of the volume element.

• Coordinate velocity: Is the coordinate velocity of light constant?

• Conformal structure and light cone structure: conformal transformations of the spacetime
metric.

application

v : C∞(M)→ C∞(M) (3.11)

satisfying in addition the Leibniz-rule

v(fg) = v(f)g + fv(g) ∀f, g ∈ C∞(M) . (3.12)

This de�nes v as a derivation in C∞(M).
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5.1 Derivation of Schwarzschild solution. Birkho�'s theorem

5.1.1 Resolution of Einstein equations: vacuum spherically symmetric case

[To be completed following MTW 32.2.] Result: there exits coordinates, adapted to spher-
ical symmetry, in which the line element of vacuum spherically symmetric spacetime writes

ds2 = −f(r)dt2 + (f(r))−1 dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (5.1)

with1

f = f(r) =

(
1 +

C

r

)
. (5.2)

5.1.2 Fixing the integration constant: Newton's theory of Gravity again

Let us �x the parameter C in (5.1). This point requires to make contact with Newton's theory
of gravitation. This can be addressed (at least) in two approaches:

i) Field equations approach: to impose that the solution to linearized Einstein equations
recover the solution to Poisson's equation for Newton's gravity.

ii) Particle-motion equation approach: to impose that, at large distaces r →∞, test-particles
follow Keplerian motion dictated by Newton's Gravitation law.

We follow here the second approach (cf. e.g. [10] for the discussion of linearized gravity). Let us
consider an observer with 4-velocity ua in (5.1). First we write

uµ =
dxµ

dτ
= (ṫ, ṙ, θ̇, ϕ̇) . (5.3)

1Note the physical dimensions of C: [C] = Length.
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We �x trajectories to the equatorial plane: θ = π
2 , θ̇ = 0. We impose the arc-length normalization

condition uaua = −1

−1 = gabu
aub = −f ṫ2 +

1

f
ṙ2 + r2 sin2 θ︸ ︷︷ ︸

=1

ϕ̇2 (5.4)

At this point, in order to simplify the discussion and illustrate the usefulne

Lemma 1 (Conserved quantities along geodesics). Given a Killing vector ka and a geodesic
with tangent vector ua, the quantity

k = kaua , (5.5)

is preserved along geodesics.

Proof. Indeed, we evaluate
dk

dτ
along geodesics

dk

dτ
= ua∇ak = ua∇a(kbub) = ua(∇aub)ub + kbu

a∇aub = 0 , (5.6)

where the �rst term in the last equality vanishes from the Killing condition, whereas the second
vanishes from the geodesic equation.

Using lemma 1 for the Killing vectors ta = ∂t (stationarity) and ϕ
a = ∂ϕ (rotation around the

z-axis), we can de�ned the conserved quantities E (energy per mass) and L (angular momentum
per mass)

E = −kaua = −f ṫ ⇐⇒ ṫ = −E
f

L = ϕaua = r2ϕ̇ ⇐⇒ ϕ̇ =
L

r2
(5.7)

Substituing into Eq. (5.4), we get the expression for the (square of the) energy of a timelike orbit

E2 = ṙ2 + f

(
1 +

L2

r2

)
. (5.8)

We focus for simplicity on radial geodesics, L = 0, so that

E2 = ṙ2 + f(r) . (5.9)

Deriving this expression along geodesics, and using the constancy of E,

0 = 2ṙr̈ + ṙ
df

dr

ṙ=0⇐⇒ 2r̈ +
df

dr
= 0 ; r̈ = −f

′

2
(5.10)

On the other hand, we can write (assuming that dt/dτ > 0) and using (5.7)

ṙ =
dr

dτ
=
dr

dt

dt

dτ
= ṫ

dr

dt
= −E

f

dr

dt
. (5.11)

From this we can derive

r̈ =
E2

f

(
− f

′

f2

(
dr

dt

)2

+
1

f

d2r

dt2

)
. (5.12)
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In the non-relativistic limit c→∞, and at large distances, one can conclude (cf. Exercise 1)

r̈ ∼ d2r

dt2
. (5.13)

Using then (5.10), together with f ′(r) = −C
r2

and Newton's Universal law of gravitation
d2r

dt2
=

−M
r
, one concludes

C = −2M . (5.14)

We can therefore write Schwarzschild line element as

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
. (5.15)

To reintroduce physical dimensions, cf. Exercise 1, one shifts M → GM
c2

.

Exercise 1: Perfoming the shift τ → cτ and t → ct, so that (5.1) writes c2dτ2 = c2f(r)dt2 −
(f(r))

−1
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, reproduce the steps in the text to get:

ṫ = − E

fc2

E2

c2
= f(r)c2 + ṙ2 = f(r)c2 +

E2

f2c4

(
dr

dt

)2

0 = f ′ṙc2 + 2ṙr̈ =⇒ r̈ = −f
′c2

2

r̈ =
E2

c4f

(
− f
′

f2

(
dr

dt

)2

+
1

f

d2r

dt2

)
.

In the non-relativistic limit c→∞, dr
dt � c, conclude from the second equation

E2

c4f
∼ 1 , (5.16)

whereas from the third and the fourth

1

f

(
E2

c4f

)
d2r

dt2
= −f

′c2

2
− E2

c4f

f ′

f2

(
dr

dt

)2

(5.17)

so that when c→∞
1

f

d2r

dt2
= −f

′c2

2
(5.18)

Finally, using f ∼ 1 at large distances and Newton's Universal law of gravitation
d2r

dt2
= −GM

r2
, conclude

from the form of f(r), cf. (5.2)

C = −2GM

c2
(5.19)

The ratio
G

c2
, of dimensions

[
G

c2

]
=

Length

Mass
, relates distances and masses in the theory through the

compacity parameter Ξ introduced in (1.52). Its small value associates naturally a compact gravitational

scale
G

c2
Mto a given mass M .



56 Schwarzschild Solution

5.1.3 Birkho�'s theorem

From the derivation of Schwarzschild's line element, we can state the following theorem by
Birkho� (cf. e.g. [5, 2]).

Theorem 1 (Birkho�'s theorem). The solution to vacuum spherically symmetric Einstein

equations is locally isometric to the Schwarzschild solution for a certain parameter M .

The theorem does not tell us how to �x the parameterM , that from the derivation above can
be interpreted as the mass of the compact object responsible of the orbital motion. In this sense,
at a given r around a center of spherical symmetry, M would correspond to the mass contained
inside the sphere of radius M . In this sense, Birkho� theorem is a relativistic counterpart of the
well-known result in Newtonian's gravity of the gravitational e�ect of spherical distributions on
point-like particles, namely:

i) The gravitational force felt by a particle inside a hollow sphere of mass M is exactly zero.

ii) The exterior e�ect of a spherical distribution of matter of massM on the particle is exactly
the same as the one created by a point particle of mass M at the center.

This is due, in Newtonian gravity, to the exact matching between the
1

r2
dependence of the

gravitational force and the area in dependence as r2.
This theorem can be generalized to the charged case in terms of the Reissner-Nordström

solution and to solutions with cosmological constant.

5.1.4 Gravitational redshift

If we look at Schwarzschild line element, we notice that expression becomes singular at r = 0
and r = 2M , in such a way that the expression is only valid in charts with either r ∈]2M,∞[ or
r ∈]0, 2M [. At this stage it is not an easy question to answer if such hypersurfaces correspond
to actual singularities of the geometry or to a bad choice of coordinates. Let us focus on the
chart r ∈]2M,∞[, namely on the exterior of a spherical compact object of radius rmatter and
connecting to in�nity. As long as rmatter > 2M , the solution in the interior of the star (not
vacuum) is di�erent from Schwarzschild and problem shows up at r = 2M . But, if for some
reason rmatter < 2M , then the chart is not covering the whole exterior. Let us focus on this
situation coming from the exterior.

Speci�cally, at this point we are in conditions of making contact with one of the opening
themes of our approach to gravitation in a relativistic setting, namely gravitational redshift.
Schwarzschild solution allows us to address this issue in a systematic manner. The main two
ingredients are the Schwarzschild line element (5.15) and stationarity. We proceed in two equiv-
alent ways.

Heuristic approach

This approaches stresses the worldlines of two observers. We consider two stationary observers
located at (constant) r = r1 and r2 (along the same radial direction θ = θo and ϕ = ϕo constants),
with 2M < r1 < r2. In Schwarschild coordinates, the spacetime trajectories of these observers
are, respectively, (t, r1, θo, ϕo) and (t, r2, θo, ϕo), so it holds (dτ2 = −ds2)

dτ2 =

(
1− 2M

r

)
dt2 . (5.20)
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Evaluating for each observer, we get the relation between di�erentials of the proper time dτi as
measured by each observer along its own trajectory (its �proper clock�) and that of coordinate
time dti.

dτ1 =

√
1− 2M

r1
dt1 , dτ2 =

√
1− 2M

r2
dt2 . (5.21)

Now the observer at r1 sends a periodic (radial) light signal to r2 during a time lapse, that
measured in its proper time is dτ1. These signals are received by observer at r2 and (s)he
measures a time lapse dτ1.

The key point in the argument is that, due to stationarity (namely no geometric feature
depends on t, since ∂t is a Killing vector) all light rays are �parallel� in the (t, r) diagram. This
translates into the crucial relation

dt1 = dt2 , (5.22)

so the �coordinate time� lapses, and not the �proper time� lapses, coincide. From this and (5.21)
we get the relation

dτ1√
1− 2M

r1

=
dτ2√

1− 2M
r2

=⇒ dτ2
dτ1

=

√
1− 2M

r2√
1− 2M

r1

(5.23)

Using now that the number N of �ticks� (the physical invariant quantity) emitted and received
is the same, with N = νidτi where νi the frequency of the signal for each observer, we have

ν1dτ1 = ν2dτ2 =⇒ ν1
ν2

=
dτ2
dτ1

, (5.24)

and using the expression above

ν1
ν2

=

√
1− 2M

r2√
1− 2M

r1

. (5.25)

Using r1 < r2 we conclude therefore that ν1 > ν2, so the frequency is redshifted when light gets
to larger distances.

Geometric rigorous approach

We address now the gravitational redshift discussion in a fully geometric methodology. In this
approach the emphasis is on lightlike geodesics, rather than on observers trajectories, as in the
previous discussion. We start by de�ning (e.g. [10]) the (angular) frequency ω (note the relation
ω = 2πν with ν, the inverse of the period) measured by an observer ua.

De�nition 1 (Frequency measured by an observer). Given a null geodesic a�nely parametrized

with tangen vector ka (namely kak
a = 0, ∇aka = 0), the frequancy ω measured by an observer

ua (i.e. uau
a = −1) is given by

ω = −kaua . (5.26)
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As a motivation for this de�nition, connecting a wave-like aspect (frequency) with a geometric
optics one (geodescis) let us consider a wave-type equation for a massless �eld φ in Minkowski(

−∂2

∂t2
+ ∆

)
φ = 0 . (5.27)

If we consider a mode φ(t, x) ∼ eikax
a

= ei(ωt−
~k~x), where ka = (ω,~k), satisfying this equation

(equivalently, taking Fourier transform), we have the dispersion relation

kak
a = 0 ⇐⇒ −ω2 + ~k2 = 0 ⇐⇒ ω = |~k| , (5.28)

corresponding to a null geodesic with tangent ka. The frequency observed by an observer sta-
tionary in this reference system ua = (1, 0, 0, 0) is indeed ω = −kaua.

With these elements, let us consider two stationary observers ua1 et u
a
2, at respective locations

r1 and r2, 2M < r<r2 collinear with one �ow line of the timelike Killing vector ta. By imposing
gabu

a
i u

b
i = −1, we can then write along the �ow line

uai =
1√
−tata

ta
∣∣∣∣
i

, (5.29)

At this point we consider the sending by observer u1 of a light ray towards u2. The light ray
follows a geodesic with tangent vector ka. Taking into account lemma 1, and ta being a Killing
vector, we know that the quantity taka is constant along the geodesic. That is

(taka)1 = (taka)2 . (5.30)

Writing, at each location, ta in terms of ua we �nd(√
−tbtb uaka

)
1

=
(√
−tbtb uaka

)
2
. (5.31)

Using now the expression of the frequency in de�nition 1, we get the relation between frequencies
ω1 and ω2 (√

−tbtb
)
1
ω1 =

(√
−tbtb

)
2
ω2 (5.32)

in terms of the norm of the Killing. This expression is valid in any coordinate system, in any
stationary spacetime. If we consider a coordinate system in which ta = ∂t, then t

btb = gtt and(√
−gtt

)
1
ω1 =

(√
−gtt

)
2
ω2 ,

ω1

ω2
=

(
√
−gtt)2

(
√
−gtt)1

(5.33)

In the particular case of Schwarzschild we �nally get

ω1

ω2
=

√
1− 2M

r2√
1− 2M

r1

. (5.34)

Introducing the redshift factor

z =
λ2 − λ1
λ1

, 1 + z =
λ2
λ1

, (5.35)
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we �nd

1 + z =
λ1
λ2

=
ω2

ω1
=

√
1− 2M

r1√
1− 2M

r2

. (5.36)

This derivation shows the remarkable geometrization e�ort needed to transition from the heuristic
motivations in the �rst chapter into a sound mathematical formalism in which the phenomenon
can be presented as a theorem. Indeed, a neat example illustrating the rationale underlying
mathematical physics.

5.1.5 Causal structure

As we did with the Rindler spacetime, in order to gain an intuition on the causal structure of the
spacetime, we look at the null geodesics, focusing on the radial ones θ = θo and ϕ = ϕo. Setting
to zero the line element along these trajectories we �nd

0 = f(r)dt2 + (f(r))−1 dr2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 , (5.37)

so that along these trajectories it is satis�ed(
dt

dr

)2

=

(
1− 2M

r

)−2
, (5.38)

that is

dt

dr
= ± (f(r))−1 = ±

(
1− 2M

r

)−1
, (5.39)

where the �+� signs corresponds to outgoing geodesics and the �−� to ingoing geodesics. Although
we do not need an explicit solution to draw the trajectories, in this cas an explicit expression
can be given, namely

t = ±r∗ + C , (5.40)

with C a constant, and r∗ the so-called tortoise coordinate, de�ned as

dr∗
dr

= f−1 , r∗ = r + 2M ln
( r

2M
− 1
)

(5.41)

The resulting causal structure can be see in Fig. 5.1, where outgoing and ingoing light geodesics
are show (in yellow), with the corresponding light cones (in blue).

We can comment on the following features:

i) Note the di�erent behaviour of both charts, with the interchange of �time� direction, along
t for r > 2M and along r forn r < 2M . The orientation of light cones respond to this.

ii) Outgoing light rays asymptote to slope 1 straight lines, i.e. Minkowski light rays, consis-
tently with the recovery of a �at geometry far from the central object. This anticipates
the notion of �null in�nity� to be later introduced.
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Figure 5.1: Causal structure of Schwarzschild, diagram in Schwarzschild coordinates.

iii) Light cones start for r → ∞ as Minkowski light cones. As long as r decreases they close
more and more and �nally they degenerate at the r = 2M hypersurface closing completely.
Then transition in the r < 2M chart to fully open cones that oriented to the left that close
further and further till they fully close.

iv) Notice that the hypersurface r = 2M is (asymptotically) �tangent� to the light rays, so it is
�light� or null hypersurface, whereas the hypersurface r = 0 is encountered by �advancing�
light cones (a time orientation is assumed here), that is, r = 0 is a spacelike hypersurface:
it is �moment in time�, not a �place�, it happens �in future�, and not �to the left� or �to the
right�.

Fom this picture we get an intuition of some features, but is also clear that something pathological
happens in these chart representations as r → 2M . We comment a bit further.

5.1.6 Some remarks about the hypersurface r = 2M

Null hypersurface: causal horizon

Strictly speaking, the hypersuface r = 2M lays outside of the domain of charts r > 2M or
r < 2M . However it corresponds to the limit r → 2M of a family of hypersurfaces r = c
parametrized by the constant c, on which the vector �eld ∂t is tangent. To determine the metric
type of such hypersurfaces (namely the type of induced metric from the ambient spacetime
metric), we must detemine the metric type of ∂t (the other two directions, on the sphere, are
always spacelike). We get

g(∂t, ∂t) = gtt = −
(

1− 2M

r

)
. (5.42)

That is, in the chart r > 2M , ∂t is timelike, and hypersurfaces r = c are timelike. On the contrary,
for r < 2M ∂t is spacelike and hypersurfaces r = c are spacelike. However, in both cases, when
making the limit limr→2M g(∂t, ∂t) = 0, indicating that r = 2M is a null hypersurface.

From the discussion of the Rindler spacetime, we have learned that null hypersurfaces act
as causal horizons, in the sense that if the are traversed in one sense, one cannot turn back and
traverse in the other sense. The hypersurface r = 2M in Schwarzschild behaves much as the
hypersurface x = 0 behaved in Rindler. The �traversability� is however not obvious from Fig.
5.1, due to the closing of null cones: we need to �resolve� such collapse to know if a causal curve
can go through r = 2M . This calls for looking for another representation of this geometry.
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Surface of in�nite redshift: geometric (apparent) horizons

Looking at the expression (5.36) for the gravitational redshift, if r2 stays constant, the gravi-
tational redshift grows as r1 becomes smaller. This is consistent with the fact that light rays
have �to struggle� to get away as they are emitted closer and closer to r = 2M : the �ticks� get
distanced because the light ray is retained. Eventually, in the limit r1 → 2M , the gravitational
redshift diverges

lim
r1→2M

(1 + z) =

√
1− 2M

r2√
1− 2M

r1

=∞ (5.43)

Light rays cannot escape and the time �to the next tick� becomes in�nite. The surface r = 2M
is therefore an �in�nite redshift� hypersurface. This concept is related to the geometric notion
of (marginally) trapped surface and apparent horizons, as we shall see later.

Time to get to the surface r=2M: �frozen stars�

In the other ingoing direction if we send a light ray from ro to towards de horizon, we can ask
how long, in coordinate time t, it takes for it get to the hypersurface r = 2M . According to
(5.39) and choosing the sign corresponding to ingoing rays, we can write

dt = −
(

1− 2M

r

)−1
dr . (5.44)

Therefore

∆t = lim
r→2M

−
∫ r

ro

(
1− 2M

r

)−1
dr = lim

r→2M
[r − 2M ln(r − 2M)]rro

= (ro − r) + 2M ln

(
ro − 2M

r − 2M

)
=∞ . (5.45)

Therefore, it takes an in�nite time for the light ray to get to the r = 2M . With hindsight, this
is actually apparent in Fig. 5.1, since ingoing light rays have a vertical asymptote at r = 2M ,
this meaning that they cross all t = const lines.

More interesting is the calculation for a radial timelike geodesic.

Exercise 2 (Frozen stars). Consider a massive test particle at rest at r = ro, that stars falling in �free
fall� (geodesic). Taking into account the timelike geodesic equation (5.8):

i) Show that the (Schwarzschild) coordinate time ∆t that takes for the particle to r = 2M is in�nite.

ii) Show that the corresponding proper time ∆τ is �nite.

In other words, if an observer very far at large r's (almost Minkowskian region and therefore
with a proper time that coincides with coordinate t) measures the time for the particle to reach
r = 2M it sees that this time is in�nite. That is, from his perspective, the particle seems to
slown down as it gets closer and closer to the r = 2M surface. When extended to a collapsing
star, it leads to the notion of a star whose surface seems to settle to r = 2M and stay there: this
leads to the notion of �frozen stars� in the context Openheimer-Snyder.

On the contrary, for the particle falling down, nothing of this kind happens and it gets to
r = 2M at a �nite time. Everything seems �as normal�. Whether it can get across such surface
cannot be elucidated in these coordinates.
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5.2 Global structure of the Schwarzschild spacetime

Points discussed about the hypersurfave r = 2M strongly suggests the need to regard the surface
r = 2M in other coordinates. It was not an obvious step at early stages in the development
general relativity to recognized the actual regular geometry nature of the r = 2M hypersur-
face[ref!].

5.2.1 Eddington-Finkelstein coordinates

Exercise 3 (Eddington-Finkelstein coordinates). Given the Schwarzschild metric in standard co-
ordinates (t, r, θ, ϕ), consider the change of variables:

t′ = t+ 2M ln
( r

2M
− 1
)

r′ = r

θ′ = θ

ϕ′ = ϕ

i) Write the line element in the coordinates (t′, r′, θ′, ϕ′).

ii) Consider the radial outgoing and ingoing null trajectories (i.e. θ′ and ϕ′ constant). Determine the
ODEs satis�ed by these trajectories and sketch the corresponding outgoing and ingoing curves in
a (t′, r′) diagram, in particular showing the null cones.

iii) Determine the coordinate time ∆t′ between the emission of an ingoing radial light ray from an
observer at position r+ and its reception at r− (with r+ > r−). If r− = 2M , what can be
concluded about the new coordinate system as compared with the original one?

5.2.2 Maximal extension of Schwarzschild: Kruskal coordinates
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