Équations différentielles ordinaires (EDOs)
Motivation:
Etant donné we fonction $f: I \rightarrow \mathbb{R}$, avec expression $f(x), x \in I$, le problème de trouver sa primitive $y: I \rightarrow \mathbb{R}$ on pent le formuler comme:

$$
\begin{equation*}
y^{\prime}(x)=f(x) \tag{*}
\end{equation*}
$$

Clest notre premier exemple d'équation différentiolle ordinaine. On a appris que si $y=y(x)$ est une solution, si c'est une primitive, alors $\bar{y}=y(x)+C$ est aussi une primitive (vii C est constante).

Alors, la solution à ((x) est fixée à une constante près.
Dofinition. Soit $n \in \mathbb{N}^{*}$ et suit une fonction:
$F: I \times \mathbb{R}^{h}$ continue. L'expression:

$$
y^{(n)}(x)=F\left(\frac{x}{1}, \frac{y(x)}{1}, \frac{y^{\prime}(x)}{2}, \frac{y^{\prime \prime}(x), \ldots,}{3} \cdots \frac{y^{(n-1)}(x)}{n}\right.
$$

définit une équation différenticlle d'ordre n avec inconnue $y: I \rightarrow \mathbb{R}, y(x)$.
Defintion (solution d'une EDO): On appelle solution de $\left({ }^{*} *\right)$ à une conple (I, φ), I intervalle et $\varphi: I \rightarrow \mathbb{R}$, telle que:
i) φ est n fois dérivable.
ii) $\forall x \in I$ on a :

$$
\varphi^{(n)}(x)=F\left(x, \varphi(x), \varphi^{\prime}(x), \ldots, \varphi^{(n-1)}(x)\right)
$$

Exemple 1:
On conridere $\quad y^{\prime}(x)=-\frac{y(x)}{x} \quad y^{\prime}(x)=F(x, y(x))$
Ici: $n=1$

- $F(x, y)=-\frac{y}{x} \quad F: \mathbb{R} \times \mathbb{R}^{\delta^{n=1} \rightarrow \mathbb{R}}$

Une solution à cette equation est donnée par

$$
\begin{aligned}
& y: \widehat{子 0, \infty} \infty \quad y(x)=\frac{2}{x} \\
& x \mapsto y
\end{aligned}
$$

En effet: $\quad y^{\prime}(x)=-\frac{3}{x^{2}}$

$$
F(x, y(x))=-\frac{2 y(x)}{x}=-\frac{2}{x} x=-\frac{2}{x^{2}}
$$

Alors:

$$
y^{\prime}(x)=F(x, y(x))
$$

En fort, on pent verifier: $y(x)=\frac{C}{x}$ est aussi solution.

C'est le cas qu'on trouve de forme générale:

- La solution (intégrale) générale diure ćquation d'ordre n est une expression qui dejend de n constanter (libres) et qui satisfout l^{\prime} EDO.
- Pour chaque chaix de constantes on a une oveution particulière.
- Solutron (intégrale) singulière: sochction qui n'est pas générale et nox plus particutiére.

Exemple 2:

$$
\begin{aligned}
& y^{\prime \prime}(x)=-\omega^{2} y(x) \quad, \quad \omega \in \mathbb{R} \\
& y^{\prime \prime}(x)+\omega^{2} y(x)=0
\end{aligned}
$$

(oscillateur harmonique)
Ia:

$$
\begin{aligned}
& n=2 \\
& F(x, y)=-w^{2} y
\end{aligned}
$$

On pant vérifier:
$y(x)=C_{1} \cos (\omega x)+C_{2} \sin (\omega x)$ est une dolution. C'ast la oolution géné rale.

$$
c_{1}, c_{2} \in \mathbb{R}
$$

Si par exemple, je chaixi $C_{1}=0, C_{2}=1$

$$
y(x)=\sin (\omega x)
$$

C'ost une solution particultère.
Proponition: Soit (I, y) est solution de (**), alors $y \in C^{n}(I)$

Il y a un théorème (Candy-Lipschitz) qui vous garantie I'existence et l'uniaité dine EDO avec conditions initialles.

Équations Différentilles Ordinaires linéaives

à coefficients constantes

Dés. Scriant $g_{1}, g_{2} \ldots g_{n}: I \rightarrow \mathbb{R}$. Une eq. de la fame:

$$
\begin{aligned}
& y^{(n)}+g_{1}(x) y^{(n-1)}(x)+g_{2}(x) y^{(n-2)}(x)+\cdots+g_{n-1}(x) y^{\prime}(x) \\
& +g_{n}(x) y(x)=f(x)
\end{aligned}
$$

est dite une EDO linéaire (d'ordren)
Si $f(x)=0$, e'eq. est hamogere.
Elle est nen-harngè ne dow le cas contrare.

Def: On dit que $y_{1}, y_{2}, \ldots, y_{n}: I \rightarrow \lambda R$ sent linéourent indépendent si

$$
C_{1} y_{1}+\cdots+C_{n} y_{n}=0
$$

avec $c_{i} \in \mathbb{R}$, alars $c_{1}=\ldots \cdot C_{n}=0$
On peut manhor que y_{1}, \ldots, y_{n} dentl. i. soi ren Wranskian

$$
W\left(y_{1}, \cdots y_{1}\right)=\operatorname{det}\left(\begin{array}{c}
y_{1}
\end{array} \cdots y_{n}\right)
$$

ert non Léro.

Iei on va consideier EDOs d'ordre $n=2$ avec cofficient $g_{1}, \ldots g_{n-1}$ constants.

C'est à dure:

$$
\begin{aligned}
& \text { est à dine: } \\
& (\not * * *) \quad y^{\prime \prime}+a y^{\prime}+b y=f(x) \quad a, b \in \mathbb{R}
\end{aligned}
$$

Théoreme. Si y_{1} et y_{2} sont solutions particuliees de e'éq. banozine:

$$
(* * * t) \quad y^{\prime \prime}+a y^{\prime}+b y=0
$$

et y_{1} et y_{2} sont linéarement indeipendent: alors la solution génerale de ($+\times * *$) est

$$
y_{\mu}=C_{1} y_{1}+C_{2} y_{2}
$$

Theorine: Étant donné:

$$
y^{\prime \prime}+a y^{\prime}+b y^{\prime \prime}=f(x)
$$

Si y_{p} est une solution particuliere de e'éद. non-harngène $(* * *)$ y yer est la solution jénérale de l'éq. ham ojē̆e ($x * * x$) alors

$$
y=y_{e}+y_{p}
$$

est la ovelution générale de l'eq̆.non-homo dène.

En pratique (algorithme):

- On commece avec l'EDO homojeive:

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

i) On cherche une polutin de la farme

$$
\begin{aligned}
& y(x)=e^{\lambda x} \quad, \quad \lambda \in \mathbb{C} \\
& y=e^{\lambda x} \\
& y^{\prime}=\lambda e^{\lambda x} \\
& y^{\prime \prime}=\lambda^{2} e^{\lambda x}
\end{aligned}
$$

On substifue dens I'eq:

$$
\lambda^{2} e^{\lambda x}+a \lambda e^{\lambda x}+e^{\lambda x}=0
$$

Mav $e^{\lambda x} \neq 0$

$$
\left.\begin{array}{l}
e^{\lambda x} \neq 0 \\
e^{e^{x x}}(\underbrace{\lambda^{2}+a \lambda+b}_{=0})=0
\end{array}\right\} \Rightarrow \lambda^{2}+a \lambda+b=0
$$

On pent écrive $B=a^{2}-4 b$

$$
\lambda=\frac{-a \pm \sqrt{\Delta}}{2}=\frac{-a \pm \sqrt{a^{2}-4 b}}{2}
$$

Trais caspen fundian des racizes $1_{1}, d_{2}$:
a) a_{1}, λ_{2} difgérent. réelles:

$$
y_{a}=c_{1} e^{\lambda_{1} x}+c_{2} e^{22 x}
$$

Exemple: $\quad y^{\prime \prime}-4 y=0 \underset{\uparrow}{\longrightarrow} \lambda^{2}-4=0$ $y=e^{\lambda x}$

$$
\begin{aligned}
& \longrightarrow \lambda_{1}= \pm 2, \lambda_{1}=2, \lambda_{2}=-2 \\
& y_{n}=c_{1} e^{2 x}+c_{2} e^{-2 x}
\end{aligned}
$$

b) $\lambda_{1}=\lambda_{2}\binom{$ réelle }{$i, i}$
b) $d_{1}=d_{z}$ (reele)

$$
d_{1}=d_{2} \text { (reele) }=c_{1} e^{d_{1} \times\left.\right|^{\prime}}+c_{2} \underbrace{r \times e^{\lambda_{11 x}}}_{\text {Ex. जirfier que }}
$$

Exemple:

$$
\begin{aligned}
& \begin{array}{l}
\left.\begin{array}{l}
y^{\prime \prime}+2 y^{\prime}+y=0 \\
y=e^{\lambda x}
\end{array}\right\} \rightarrow
\end{array} \underbrace{\lambda^{2}+2 \lambda+1}_{(\lambda+1)^{2} \rightarrow \lambda_{1,2}=-1}=0 \\
& y_{a}=c_{1} e^{-x}+c_{2} x e^{-x}
\end{aligned}
$$

c) λ_{1} et λ_{2} complexes $\longrightarrow \lambda_{1}=\lambda_{2}$

$$
\left.\begin{array}{l}
(z=x+i y \\
\bar{z}=x-i y
\end{array}\right)
$$

$$
\begin{gathered}
\lambda_{1}=\alpha+i \beta \\
\lambda_{2}=\alpha-i \beta \\
y_{h}=\tilde{C}_{1} e^{(\alpha+i \beta) x}+\widetilde{C}_{2} e^{(\alpha-i \beta x)}, C_{1, C_{2}}^{\in \mathbb{C}} \\
\text { Rappel: } e^{x+i y}=e^{x} \underbrace{e^{i y}=e^{x}(\cos x+i \sin y)}_{\text {cosytixiny }})
\end{gathered}
$$

On put reécrive:

$$
\begin{aligned}
& y_{u}= \tilde{C}_{1} e^{\alpha x}\left(\cos \beta_{x}+i \sin \beta x\right)+ \\
& \widetilde{C}_{2} e^{\alpha x}(\underbrace{\cos (-\beta x)+}_{\cos \beta x} \underbrace{\sin (-\beta x)}_{-i \sin \beta x}) \\
&= C_{1} e^{\alpha x} \cos \beta x+C_{2} e^{\alpha x} \sin \beta_{x} \\
&\left(\widetilde{C}_{1}, \tau_{2} \in \mathbb{C}, C_{1}, C_{2} \in \mathbb{R}\right)
\end{aligned}
$$

Ex exple:

$$
\begin{aligned}
& y^{\prime \prime}+6 y^{\prime}+12 y=0 \\
& \quad \int y_{1} e^{\lambda x} \\
& \lambda^{2}+C \lambda+12=c \\
& \lambda=\frac{-6 \pm \sqrt{36-4 \theta}}{2}==\frac{-6 \pm \sqrt{(-12}}{2} \\
& =\frac{-3 \pm i \sqrt{3}}{} \\
& {\left[y_{a}=\tilde{c}_{1} e^{(-3+i \sqrt{3}) x}+\tilde{C}_{2} e^{(-3-i \sqrt{3}) x}\right.} \\
& =c_{1} e^{-3 x} \cos (\sqrt{3} x)+c_{2} e^{-3 x} \sin (\sqrt{3} x)
\end{aligned}
$$

Paus des EDO, linécures à coeffe. constents d'ordre n, la procédure est excoctènt l_{c} rime, mais <l'équation (aljétrigue) caracterstigy est d'ordre n. ($n \geqslant 5$ an ne sait pas le résendre de forme exacte).

On regarde mainterent:

$$
y^{\prime \prime}+a y^{\prime}+b y=f(x)
$$

On sait: $\quad y=y_{r}+y_{p}$
Il fant trouver y_{p}. Ie $n^{\prime} y$ a pos ume méthode gévorale. Il y a dencx approdes (et à pres ...e'art).
a) Coefficients indetermine?.
\therefore Vrovianken de constantes.

1) Coegficients indeterminey.
ii) Variakm de constantes.

On oa disunter i)
On a bescin de $f(x)$ denné par des somones, des produits... de:

$$
x^{n}, e^{m x}, \cos \beta_{x}, \sin \beta x
$$

On va proposer comme hypoties gour y_{p} une forme qui geñéralixe $f(x)$:

Exemple:

$$
\begin{aligned}
& f(x)=3 x^{2} \rightarrow \quad y_{p}=A x^{2}+B x+c \\
& f(x)=4 x e^{x} \rightarrow \quad y_{p}=A x e^{x}+B e^{x} \\
& f(x)=x \sin 2 x \rightarrow y_{p}=(A x+B)+C \sin x \\
&+D \cos x
\end{aligned}
$$

Exerple:

$$
\begin{aligned}
& y=y_{e n}+y_{p}
\end{aligned}
$$

- y_{h} :

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}+3 y=0 \\
e^{\lambda x} \\
x^{2}-2 x+3=0 \rightarrow \begin{array}{l}
\lambda_{1}=3 \\
\lambda_{2}=-1
\end{array} \\
y_{a}=c_{1} e^{3 x}+c_{2} e^{-x} \quad
\end{gathered}
$$

- $y_{p}: \quad y_{p}=A \cos x+B \sin x$

On va cluerder A et B tel que y_{p} soit saluti. de la nen-lomo.

Poun fixer A et B :

$$
\begin{aligned}
& y_{p}=A \cot +B \sin x \\
& y_{p}^{\prime}=-A \sin x+B \cos x \\
& y_{p}^{\prime \prime}=-A \cos x-B \sin x
\end{aligned}
$$

Danc $y^{\prime \prime}-2 y^{\prime}+3 y=2 \sin x$

$$
\begin{aligned}
& (-\underbrace{A \sin x-B \cos x)}_{y_{p}}-2(\underbrace{A \cos x-B \sin x}_{Y_{p}^{\prime \prime}}) \\
& \quad+3(\underbrace{A^{2}}_{\frac{4 \sin x}{A(x)}+B \cos x})=\frac{2 \sin x}{8(x)}
\end{aligned}
$$

Je peux rearranger:

$$
\begin{aligned}
& \cos x\left(\frac{-A-2 B-3 A}{-\sin }+\operatorname{tin} x\left(\frac{-B+2 A-3 B}{-4 A-2 B}\right)\right. \\
& =\frac{\sin x+2 A}{}+\cos x
\end{aligned}
$$

Danc:

$$
\left\{\begin{array}{cc}
-4 A-2 B=0 \\
2 A-4 B=2
\end{array} \rightarrow B=2 A\left\{\begin{array}{l}
\rightarrow 2 A-4(-2 A) \\
A=1 / 5 \\
B=-2 / 5
\end{array}\right.\right.
$$

Si an vano damande:
Trouver la solution porticuliore:

$$
(*) \sqrt{h^{\prime \prime}-3 y^{\prime}+2 y=2 \cos x}
$$

$* \left\lvert\,\left\{\begin{array}{l}1 y-2 y^{\prime}+x y-200 \\ \begin{array}{l}y(0)=1 \\ y^{\prime}(0)=0\end{array}\end{array}\right.\right.$
Vous pouver veigivier (oxercice):
In dolutin générale est:

$$
y=\underbrace{A e^{2 x}+B e^{x}}_{y_{e}}-\frac{3}{5} \sin x+\frac{1}{5} \cos x
$$

Deaintenct il gaut imposer:

$$
\begin{aligned}
& y(0)=1 \\
& y(0)=0 \\
& y^{\prime}=2 A e^{2 x}+B e^{x}-\frac{3}{5} \cos x-\frac{1}{5} \sin x \\
& y(0)=1 \rightarrow A+B-0+\frac{1}{5}=1 \\
& y^{\prime}(0)=0 \rightarrow 2 A+B-\frac{3}{5}=0
\end{aligned}
$$

Dorc: $\left\lvert\, \begin{aligned} & A+B=4 / 2 \\ & 2 A+B=3 / 2\end{aligned} \rightarrow \begin{aligned} & A=-1 / 5 \\ & B=1\end{aligned}\right.$
Co solution à ((x) :

$$
y=-\frac{1}{5} e^{2 x}+e^{x}-\frac{3}{5} \sin x+\frac{1}{5} \cos x
$$

